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Sigma (Σ) Notation

In approximating areas we have encountered sums with many terms.
A convenient way of writing such sums uses the Greek letter Σ (which
corresponds to our capital S) and is called sigma notation. More
precisely, if a1, a2, . . . , an are real numbers we denote the sum

a1 + a2 + · · ·+ an

by using the notation
n∑

k=1

ak .

The integer k is called an index or counter and takes on the values
1, 2, . . . , n. For example,

6∑
k=1

k2 = 12 + 22 + 32 + 42 + 52 + 62 = 1 + 4 + 9 + 16 + 25 + 36 = 91

whereas
6∑

k=3

k2 = 32 + 42 + 52 + 62 = 9 + 16 + 25 + 36 = 86.
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Summation Rules

The rules and formulas given next allow us to compute fairly easily

Riemann sums where the number n of subintervals is rather large. We

can also get compact and manageable expressions for the sum so that we

can readily investigate what happens as n approaches infinity.

[sr1]
n∑

k=1

c = n c [sr2]
n∑

k=1

(c ak) = c
n∑

k=1

ak

[sr3]
n∑

k=1

(ak ± bk) =
n∑

k=1

ak ±
n∑

k=1

bk

Note: The summations rules are nothing but the usual rules of
arithmetic rewritten in the Σ notation.
For example, [sr2] is nothing but the distributive law of arithmetic

c a1 + c a2 + · · ·+ c an = c (a1 + a2 + · · ·+ an);
[sr3] is nothing but the commutative law of addition
(a1 ± b1) + · · ·+ (an ± bn) = (a1 + · · ·+ an)± (b1 + · · ·+ bn).
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Formulas [Neuhauser, Example #3 (p. 279); Problem # 31 (p. 291)]

[sf1]
n∑

k=1

k =
n(n + 1)

2
[sf2]

n∑
k=1

k2 =
n(n + 1)(2n + 1)

6

Proof: In the case of [sf1], let S denote the sum of the integers 1, 2, 3, . . . , n. Let us write this sum S twice: we
first list the terms in the sum in increasing order whereas we list them in decreasing order the second time:

S = 1 + 2 + · · · + n
S = n + n − 1 + · · · + 1

If we now add the terms along the vertical columns, we obtain
2S = (n + 1) + (n + 1) + · · · + (n + 1)︸ ︷︷ ︸

n times

= n(n + 1).

This gives our desired formula, once we divide both sides of the above equality by 2.

In the case of [sf2], let S denote the sum of the integers 12, 22, 32, . . . , n2. The trick is to consider the sum
n∑

k=1

[(k + 1)3 − k3]. On the one hand, this new sum collapses to

(23−13
::

) + (33 − 23) + (43 − 33) + · · ·+ (n3 − (n − 1)3) + ((n + 1)3

::::
− n3) = (n + 1)3 − 13 = n3 + 3n2 + 3n

:::::::

On the other hand, using our summation rules together with [sf1] gives us

n∑
k=1

[(k + 1)3 − k3] =
n∑

k=1

[3k2 + 3k + 1] = 3
n∑

k=1

k2 + 3
n∑

k=1

k +
n∑

k=1

1 = 3S + 3
n(n + 1)

2
+ n

:::::::::::

Equating the right hand sides of the above identities gives us: 3S + 3
n(n + 1)

2
+ n = n3 + 3n2 + 3n.

If we solve for S and properly factor the terms, we obtain our desired expression.
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More Formulas

The next formulas can be verified in a sequential order using the
same type of trick used in the proof for [sf2]. The proofs get
increasingly more tedious.

[sf3]
n∑

k=1

k3 =
n2(n + 1)2

4

[sf4]
n∑

k=1

k4 =
n(n + 1)(2n + 1)(3n2 + 3n − 1)

30
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Example 1: (Online Homework, HW 23, # 15)

Find the numerical value of the sums below:

7∑
j=3

(4j − 1)

5∑
i=3

(i2 − i)
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Example 2:

Find the numerical value of the sums below:
n∑

j=3

(4j − 1)

n∑
i=3

(i2 − i)
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Back to the Area Problem: Partitions
The idea we have used so far is to “to partition” or subdivide the given

interval [a, b] into smaller subintervals on each of which the variable x ,

and thus the function f (x), does not change much.

Definition of a Partition

A partition of an interval [a, b] is a set of points {x0, x1, x2, . . . , xn−1, xn},
listed increasingly, on the x-axis with a = x0 and xn = b. That is:

a = x0 < x1 < x2 < . . . < xn−1 < xn = b.
These points subdivide the interval [a, b] into n subintervals

[a, x1], [x1, x2], [x2, x3], . . . , [xn−1, b].
The k-th subinterval is thus of the form [xk−1, xk ] and it has length

∆xk = xk − xk−1.

Assumption

Set ∥P∥ = max
1≤i≤n

{∆xi}. We assume that our partition P is such that

∥P∥ → 0 as n → ∞. In other words, we assume that the length of the

longest (and, hence, of all) subinterval(s) tend(s) to zero whenever the

number of subintervals in P becomes very large.
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The Definite Integral

Let f (x) be a function defined on an interval [a, b].

Partition the interval [a, b] in n subintervals of lengths
∆x1, . . . ,∆xn, respectively.

For k = 1, . . . , n pick a representative point ck in the corresponding
k-th subinterval.

The definite integral of f from a to b is defined as

lim
n→∞

n∑
k=1

f (ck) ·∆xk = lim
∥P∥→0

n∑
k=1

f (ck) ·∆xk

and it is denoted by

∫ b

a

f (x) dx .

The sum
n∑

k=1

f (ck ) · ∆xk is called a Riemann sum in honor of the German mathematician Bernhard Riemann

(1826-1866), who developed the above ideas in full generality. The symbol

∫
is called the integral sign. It is an

elongated capital S, of the kind used in the 1600s and 1700s. The letter S stands for the summation performed in
computing a Riemann sum. The numbers a and b are called the lower and upper limits of integration, respectively.
The function f (x) is called the integrand and the symbol dx is called the differential of x . You can think of the dx
as representing what happens to the term ∆x in the limit, as the size ∆x of the subintervals gets closer and closer to 0.
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The role of x in a definite integral is the one of a dummy variable.

In fact

∫ b

a

x2 dx and

∫ b

a

t2 dt have the same meaning. They

represent the same number.

We recall that a limit does not necessarily exist. However:

Theorem

If f is continuous on [a, b] then

∫ b

a

f (x) dx exists.

As we observed earlier, it is computationally easier to partition the
interval [a, b] into n subintervals of equal length. Therefore each

subinterval has length ∆x =
b − a

n
(we drop the index k as it is no

longer necessary). In this case, there is a simple formula for the
points of the partition, namely:

x0 = a+0·∆x = a, x1 = a+∆x , . . . xk = a+k·∆x , . . . , xn = a+n·∆x = b

or, more concisely, xk = a+ k · b − a

n
for k = 0, 1, 2, . . . , n.
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Definite Integrals and Areas

We stress the fact that if the function f
takes on only positive values then the
definite integral is nothing but the area of
the region below the graph of f ,
lying above the x-axis, and bounded by
the vertical lines x = a and x = b.

x

y

0 a b
Distance traveled by an object:

If the positive valued function under consideration is the velocity
v(t) of an object at time t, then the area underneath the graph of
the velocity function and lying above the t-axis represents the total
distance traveled by the object from t = a to t = b.
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What if the Function Takes on Negative Values?

If f happens to take on both positive and negative values, then the
Riemann sum is the sum of the areas of rectangles that lie above
the x-axis and the negatives of the areas of rectangles that lie
below the x-axis. Passing to the limit, we obtain that, in general, a
definite integral can be interpreted as a difference of areas:

x

y

0a b

∫ b

a

f (x) dx = [area of the region(s) lying above the x-axis]

−[area of the region(s) lying below the x-axis]
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Right Versus Left Endpoint Estimates

Observe that xk , the right endpoint of the k-th subinterval, is also the
left endpoint of the (k + 1)-th subinterval. Thus the Riemann sum
estimate for the definite integral of a function f defined over an interval
[a, b] can be written in either of the following two forms

n−1∑
k=0

f (xk) ·∆xk+1

n∑
k=1

f (xk) ·∆xk

depending on whether we use left or right endpoints, respectively.

x

y

0 1 2

Left endpoint

Riemann sum estimate

If we are dealing with a regular partition, the above sums become

n−1∑
k=0

f (a + k · ∆x) · ∆x
n∑

k=1

f (a + k · ∆x) · ∆x

with ∆x =
b − a

n
and xk = a + k · ∆x for k = 0, 1, . . . , n.

x

y

0 1 2

Right endpoint

Riemann sum estimate
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Example 3: (Online Homework, HW 23, # 11)

Express the limit as a definite integral

lim
n→∞

n∑
i=1

2

n

(
5 +

2i

n

)10
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Example 4: (Online Homework, HW 23, # 12)

Express the limit as a definite integral

lim
n→∞

n∑
i=1

4

n

√
1 +

4i

n
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Example 5: (Online Homework, HW 23, # 7)

Evaluate the following integral by interpreting it in terms of areas:∫ 3

0

(
1

2
x − 1

)
dx
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Example 6: (Online Homework, HW 23, # 10)

Let g(x) =

∫ x

0
f (t) dt, where f is the function whose graph is

shown below.

Evaluate g(x) for x = 0, 1, 2, 3, 4, 5, and 6.
Estimate g(7).
At what value of x does g attain its maximum?
At what value of x does g attain its minimum?
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