

Example 1:
Use the graph of
$$f(x) = 3^{x}$$
 to sketch the graph of each function:
 $g(x) = -3^{x}$
Use the graph of $f(x) = 3^{x}$ to sketch the graph of each function:
 $g(x) = -3^{x}$
 $h(x) - 1 - 3^{x}$
Example 1:
 $h(x) - 1 - 3^{x}$
Example 3:
 $h(x) - 1 - 3^{x}$
Example 4:
 $h(x) - 1 - 3^{x}$
Example 5:
 $h(x) - 1 - 3^{x}$
Example 6:
 $h(x) - 1 - 3^{x}$
Example 7:
 $h(x) - 3^{x}$
Example 7:
 $h(x) - 3^{x}$
 $h(x) - 3$

Exponential Functions Logarithmic Functions Exponential/Logarithmic Equations

Definition Graphs of Logarithmic Functions Laws of Logarithms **Base Change**

Laws of Logarithms

Since logarithms are 'exponents', the Laws of Exponents give rise to the Laws of Logarithms:

Laws of Logarithms

Let a be a positive number, with $a \neq 1$. Let A, B and C be any real numbers with A > 0 and B > 0.

1.
$$\log_a(AB) = \log_a A + \log_a B;$$

2. $\log_a\left(\frac{A}{B}\right) = \log_a A - \log_a B;$

$$3. \quad \log_a(A^C) = C \, \log_a A.$$

Exponential Functions Logarithmic Functions Exponential/Logarithmic Equations

Graphs of Logarithmic Functions Laws of Logarithms **Base Change**

Proof of Law 1.: $\log_a(AB) = \log_a A + \log_a B$

Let us set

$$\log_a A = u$$
 and $\log_a B = v$.

When written in exponential form, they become

Thus:

$$\begin{array}{rcl}
a^{u} = A & \text{and} & a^{v} = B. \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

In a similar fashion, one can prove 2. and 3.

http://www.ms.uky.edu/~ma137

Definition Exponential Functions **Graphs of Logarithmic Functions** Logarithmic Functions Exponential/Logarithmic Equations

http://www.ms.ukv.edu/~ma137

Laws of Logarithms **Base Change**

Lecture 2

Expanding and Combining Logarithmic Expressions

Example 3:

Use the Laws of Logarithms to combine the expression

$$\log_a b + c \log_a d - r \log_a s - \log_a t$$

into a single logarithm.

log b + c log d - r log s - log t $= \left[\log_{a} b + \log_{a} (d^{c}) \right] - \left[\log_{a} (s^{r}) + \log_{a} t \right]$ $= \log_{a}(bd^{c}) - \log_{a}(s^{t})$ $= \log_{a} \left(\frac{bd^{c}}{s^{r}t} \right)$ We used profecties 1.-3. of Logarithus

Lecture 2

14/19

Exponential Functions Logarithmic Functions Exponential/Logarithmic Equations

Definition Graphs of Logarithmic Functions Laws of Logarithms Base Change

Change of Base

Thus

For some purposes, we find it useful to change from logarithms in one base to logarithms in another base. One can prove that:

$$\log_b x = \frac{\log_a x}{\log_a b}.$$

Proof: Set $y = \log_b x$. By definition, this means that $b^y = x$. Apply now $\log_a(\cdot)$ to $b^y = x$. We obtain

$$\log_a(b^{\gamma}) = \log_a x \qquad \rightsquigarrow \qquad \gamma \log_a b = \log_a x$$

Lecture 2

Lecture 2

 $\log_b x = y = \frac{\log_a x}{\log_a b}.$

Example:
$$\log_5 2 = \frac{\log 2}{\log 5} = \frac{\ln 2}{\ln 5} \approx 0.43068.$$

http://www.ms.uky.edu/~ma137

Exponential/Logarithmic Equations

http://www.ms.uky.edu/~ma137

Solve the given equation for x:

Exponential Functions Logarithmic Functions

Example 4: (Online Homework HW03, # 6)

 $2^{5x-4} = 3^{10x-10}$

Exponential Functions Logarithmic Functions Exponential/Logarithmic Equations

Exponential Equations

An exponential equation is one in which the variable occurs in the exponent. For example,

 $3^{x+2} = 7.$

We take the (either common or natural) logarithm of each side and then use the Laws of Logarithms to 'bring down the variable' from the exponent:

Lecture 2

http://www.ms.uky.edu/~ma137

16/19

$$2^{5x-4} = 3^{10x-10}$$
Take log of both sides (or fn)

$$\log (2^{5x-4}) = \log (3^{10x-10})$$
($\Rightarrow (5x-4) \log 2 = (10x-10) \log 3$
($\Rightarrow (5\log^2) x - 4\log^2 2 = (10\log^3) x - 10\log^3$
($\Rightarrow (10\log^3) x - (5\log^2) x = 10\log^3 - 4\log^2$
($10\log^3 - 5\log^2 x = 10\log^3 - 4\log^2$
($10\log^3 - 5\log^2 x = 10\log^3 - 4\log^2$
($10\log^3 - 5\log^2 x = 10\log^3 - 4\log^2$
($10\log^3 - 5\log^2 x = 10\log^3 - 4\log^2$
($10\log^3 - 5\log^2 x = 10\log^3 - 4\log^2$
($10\log^3 - 5\log^2 x = 10\log^3 - 4\log^2$)
($10\log^3 - 5\log^2 x = 10\log^3 - 4\log^2$
($10\log^3 - 5\log^2 x = 10\log^3 - 4\log^2$)
($10\log^3 - 5\log^2 x = 10\log^3 - 4\log^2$)
($10\log^3 - 5\log^2 x = 10\log^3 - 4\log^2$)
($10\log^3 - 5\log^2 x = 10\log^3 - 4\log^2$)
($10\log^3 - 5\log^2 x = 10\log^3 - 4\log^2$)
($10\log^3 - 5\log^2 x = 10\log^3 - 4\log^2$)

17/19

15/19

Exponential Functions Logarithmic Functions Exponential/Logarithmic Equations

Logarithmic Equations

A logarithmic equation is one in which a logarithm of the variable occurs. For example,

$$\log_2(25-x)=3$$

To solve for x, we write the equation in exponential form, and then solve for the variable:

 $25 - x = 2^3 \quad \rightsquigarrow \quad 25 - x = 8 \quad \rightsquigarrow \quad x = 17.$

Alternatively, we raise the base, 2, to each side of the equation; we then use the Laws of Logarithms:

$$2^{\log_2(25-x)} = 2^3 \quad \rightsquigarrow \quad 25-x = 2^3 \quad \rightsquigarrow \quad x = 17.$$

Exponential Functions Logarithmic Functions Exponential/Logarithmic Equations

Example 5: (Online Homework HW03, # 5)

Solve the given equation for x:

$$\log_{10} x + \log_{10}(x+21) = 2$$

18/19 http://www.ms.uky.edu/~ma137 Lecture 2	19/19 http://www.ms.uky.edu/~ma137 Lecture 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\bigoplus_{i \in \mathbb{N}} \log \left[x \left(x + 2i \right) \right] = 2$	
= 10	
$(=) \qquad \qquad$	
$\implies \chi^2 + 2 \chi - 100 = 0$	
(=) (x+25)(x-4) = 0	
$\implies x = -25, 4$	
$HOWEVER$, $log_{10}(-25) + log_{10}(-25+21) = 2$	
does not make any sense! So $x=4$ is the only so bution -	