

Applications Growth Models Examples Decay Models

Exponential Models of Population Growth

The formula for population growth of several species is the same as that for continuously compounded interest. In fact in both cases the rate of growth r of a population (or an investment) per time period is proportional to the size of the population (or the amount of an investment).

Exponential Growth Model

If n_0 is the initial size of a population that experiences **exponential growth**, then the population n(t) at time t increases according to the model

 $n(t) = n_0 e^{rt}$

where r is the relative rate of growth of the population (expressed as a proportion of the population).

Applications Growth Models Examples Decay Models

Remark:

Biologists sometimes express the growth rate in terms of the **doubling-time** h, the time required for the population to double in $\ln 2$

size:
$$r = \frac{m^2}{h}$$

Proof: Indeed, from

we obtain

$$2n_0 = n(h) = n_0 e^{rh}$$
$$2 = e^{rh} \quad \rightsquigarrow \quad \ln 2 = rh \quad \rightsquigarrow \quad r = \frac{\ln 2}{h}.$$

 $\boxed{n(t)} = n_0 e^{rt} = n_0 e^{\frac{\ln 2}{h}t} = n_0 e^{(t/h) \cdot \ln 2} = n_0 e^{\ln(2^{t/h})} = n_0 2^{t/h}$

Using the doubling-time h, we can also rewrite n(t) as:

Growth Mode Growth Models Applications Applications Decay Models Examples Examples **Decay Models Radioactive Decay Remark:** Radioactive substances decay by spontaneously emitting radiations. Physicists sometimes express the rate of decay in terms of the Also in this situation, the rate of decay is proportional to the mass **half-life** h, the time required for half the mass to decay: $r = \frac{m^2}{h}$. of the substance and is independent of environmental conditions. This is analogous to population growth, except that the mass of Proof: Indeed, from radioactive material decreases. $\frac{1}{2}m_0 = m(h) = m_0 e^{-rh}$ $\frac{1}{2} = e^{-rh} \quad \rightsquigarrow \quad \ln \frac{1}{2} = -rh \quad \rightsquigarrow \quad -\ln 2 = -rh \quad \rightsquigarrow \quad r = \frac{\ln 2}{h}.$ we obtain Radioactive Decay Model If m_0 is the initial mass of a radioactive substance then the mass m(t) remaining at time t is modeled by the function $m(t) = m_0 e^{-rt}$ Using the half-time h, we can also rewrite m(t) as: where r is the relative rate of decay of the radioactive substance. $\underline{m(t)} = m_0 e^{-rt} = m_0 e^{-\frac{\ln 2}{h}t} = m_0 e^{(-t/h) \cdot \ln 2} = m_0 e^{\ln(2^{-t/h})} = m_0 \left(\frac{1}{2}\right)^{t/h}$ 4/14 5/14 http://www.ms.uky.edu/~ma137 Lecture 3 http://www.ms.uky.edu/~ma137 Lecture 3 pplications Examples Newton's Law of Cooling P(t) = 750 + 70t(a) **Example 1:** (Online Homework HW03, # 8) (b) $P(t) = 750 (1+0.12)^{t} = 750 (1.12)^{t}$ (c) $P(t) = 750 e^{0.12t}$ A town has population 750 people at year t = 0. Write a formula for the population, P, in year t if the town (a) Grows by 70 people per year (b) Grows by 12% per year (c) Grows at a continuous rate of 12% per year.

- (d) Shrinks by 14 people per year.
- (e) Shrinks by 4% per year.
- (f) Shrinks at a continuous rate of 4% per year.

(d)
$$P(t) = 750 - 14t$$

(e) $P(t) = 750 (1 - 0.04)^{t} = 750 (0.96)^{t}$
(f) $P(t) = 750 e^{-0.04t}$

Example 2 (Frog Population):

The frog population in a small pond grows exponentially. The current population is 85 frogs, and the relative growth rate is 18% per year.

Newton's Law of Cooling

(a) Which function models the population after t years?

Applications Examples

- (b) Find the projected frog population after 3 years.
- (c) When will the frog population reach 600?
- (d) When will the frog population double?

http://www.ms.uky.edu/~ma137

(a) $m(t) = 85e^{0.18t}$ (b) $m(3) = 85e^{0.18(3)} = 85e^{0.54} \approx 145.86$

(c) We need to find I so that 0.18 t 600
$85^{0.18t} = n(\bar{t}) = 600 \implies e = 85$
$ he^{0.18t} - h\left(\frac{600}{85}\right) \longrightarrow 0.18t = h\left(\frac{600}{85}\right) $
$\therefore t = \frac{\ln (6085)}{10.857} \approx 10.857 \text{ years}$
(d) Let h denote the doubling time. That is
(d) Let h denote the doubling time. That is $85e^{0.18h} = n(h) = 2.85$
1218h $1 = tu 2$
$ = 2 \qquad = 2 \qquad = 1 \qquad = 1$

(a) Using air information we have

$$P(15) = \frac{P_{0} e^{-15k}}{P_{0} e^{-35k}} = 100$$

$$P(35) = \frac{P_{0} e^{-35k}}{e^{-35k}} = 1800$$
Thus $P_{0} = \frac{100}{e^{15k}}$ and $P_{0} = \frac{1800}{e^{35k}}$

$$\implies \frac{100}{e^{15k}} = \frac{1800}{e^{35k}} \implies 100 e^{35k} = 1800 e^{15k}$$

$$\frac{QR}{e^{15k}} = \frac{1800}{100} \implies e^{-15k} = 18$$

$$\frac{QR}{e^{-15k}} = 18 \implies 20k = \ln 18 \implies \left[k = \frac{\ell_{0}18}{20}\right]$$
Thus $k = 0.144518$
What about P_{0} ? Since $P_{0} = \frac{100}{e^{15k}} \int_{e^{-15k}}^{100} f_{0}$

Example 3: (Online Homework HW03, #14)

Applications Examples

Assume that the number of bacteria follows an exponential growth model: $P(t) = P_0 e^{kt}$. The count in the bacteria culture was 100 after 15 minutes and 1800 after 35 minutes.

Lecture 3

Newton's Law of Cooling

- (a) What was the initial size of the culture?
- (b) Find the population after 105 minutes.
- (c) How many minutes after the start of the experiment will the population reach 14,000?

8/14

(c) Finally,

$$[t_{-15}]$$

 $[t_{000} = 100 \cdot 18]$
 $\Rightarrow 140 = 18^{\frac{t_{-15}}{20}}$
 $\Rightarrow \ln(140) = (\frac{t_{-15}}{20}) \cdot \ln(18)$
 $\Rightarrow 20 \ln(140) = t \cdot \ln(18) - 15 \cdot \ln(8)$
 $\Rightarrow 20 \ln(140) + 15 \ln(18)$
 $\Rightarrow 20 \ln(140) + 15 \ln(18)$
 $\Rightarrow 20 \ln(140) + 15 \ln(18)$
 $= t$

Example 4:

The mass m(t) remaining after t days from a 40-g sample of thorium-234 is given by:

$$m(t) = 40e^{-0.0277 t}$$
.

Newton's Law of Cooling

(a) How much of the sample will be left after 60 days?

Applications Examples

(b) After how long will only 10-g of the sample remain?

(a) $m(60) = 40 e^{-0.0277.60} \cong 7.59036 mg$

(b)
$$10 = m(\bar{E}) = 40e^{-0.0277.\bar{E}}$$

we need to find \bar{E} .
 $\implies \frac{1}{4} = e^{-0.0277\bar{E}}$
 $= -0.0277\bar{E}$
 $\implies \ln(\frac{1}{4}) = \ln e$
 $\stackrel{1}{=} -0.0277\bar{E}$
 $\stackrel{1}{=} -0.0277\bar{E}$
 $\stackrel{1}{=} -0.0277\bar{E}$
 $\stackrel{1}{=} -0.0277\bar{E}$
 $\stackrel{1}{=} -0.0277\bar{E}$
 $\stackrel{1}{=} -0.0277\bar{E}$

Newton's Law of Cooling

From Neuhauser's Textbook, p. 27

[...] Carbon 14 is formed high in the atmosphere. It is radioactive and decays into nitrogen (N^{14}) .

There is an equilibrium between atmospheric carbon 12 (C^{12}) and carbon 14 (C^{14}) — a ratio that has been relatively constant over a fairly long period.

When plants capture carbon dioxide (CO_2) molecules from the atmosphere and build them into a product (such as cellulose), the initial ratio of C^{14} to C^{12} is the same as that in the atmosphere.

Once the plants die, however, their uptake of CO_2 ceases, and the radioactive decay of C^{14} causes the ratio of C^{14} to C^{12} to decline.

Because the law of radioactive decay is known, the change in ratio provides an accurate measure of the time since the plants death.

Lecture 3

Applications Examples Newton's Law of Cooling **Example 5**: (Neuhauser, Problem # 65, p.38)

The half-life of C^{14} is 5730 years. Suppose that wood found at an archeological excavation site contains about 35% as much C^{14} (in relation to C^{12}) as does living plant material.

Determine when the wood was cut.

http://www.ms.uky.edu/~ma137 Lecture 3

a previous discussion $m(t) = m_0 \left(\frac{1}{2}\right)^{t/5730}$ Hence we are seeking \overline{t} such that $\overline{t}/5730$ 0.35 m = m(\overline{t}) = m $\left(\frac{1}{2}\right)$

http://www.ms.uky.edu/~ma137

$$0.35 m_{o} = m(\bar{t}) = m_{o}$$

$$0.35 = \left(\frac{1}{2}\right)^{\overline{t}/5730} \implies \ln\left(0.35\right) = \frac{\overline{t}}{5730} \ln\left(\frac{1}{2}\right)$$

$$\begin{array}{rcl} \vdots & \overline{t} = \frac{5730 \ \ln(0.35)}{\ln(\frac{1}{2})} = \frac{5730 \ \ln(0.35)}{-\ln(2)} = \\ & = \frac{5730 \ \cdot (-1) \ \ln(0.35)}{\ln(2)} = \frac{5730 \ \ln\left(\frac{1}{0.35}\right)}{\ln(2)} \cong \frac{8678.50428}{9eas} \end{array}$$

Newton's Law of Cooling

Newton's Law of Cooling states that the rate of cooling of an object is proportional to the temperature difference between the object and its surroundings, provided that the temperature difference is not too large.

Newton's Law of Cooling

Using Calculus, the following model can be deduced from this law:

The Model

10/14

If D_0 is the initial temperature difference between an object and its surroundings, and if its surroundings have temperature T_S , then the temperature of the object at time t is modeled by the function

$$T(t) = T_S + D_0 e^{-kt}$$

where k is a positive constant that depends on the object.

Lecture 3 http://www.ms.uky.edu/~ma137

Example 6 (Cooling Turkey):

A roasted turkey is taken from an oven when its temperature has reached $185^{\circ}F$ and is placed on a table in a room where the temperature is $75^{\circ}F$.

Newton's Law of Cooling

Applications Examples

- (a) If the temperature of the turkey is 150°F after half an hour, what is its temperature after 45 minutes?
- (b) When will the turkey cool to 100° F?

13/14

http://www.ms.uky.edu/~ma137 Lecture 3

Applications Examples Newton's Law of Cooling

Interested in Forensic Pathology?

Newton's Law of Cooling is used in **homicide investigations** to determine the time of death. Immediately following death, the body begins to cool (its normal temperature is 98.6° F). It has been experimentally determined that the constant in Newton's Law of Cooling is $k \approx 0.1947$, assuming time is measured in hours.

(a)
$$D_{o} = 185 - 75 = 110$$

hence the temperature of the tenter is given by
 $T(t) = 75 + 110 e^{-kt}$
So $T(30) = 75 + 110 e^{-30k} = 150$
 $\implies e^{-30k} = \frac{150 - 75}{110} \implies k = \frac{l_{II}(710)}{-30}$
 $\therefore k \cong 0.01276$
Hence $T(t) = 75 + 110 e^{-0.01276t}$
(b) Check that $T(\overline{t}) = 100 \implies$
 $\overline{t} = 116$ minutes (almost 2 hours)