

Example 1:

When $\log y$ is graphed as a function of $\log x$, a straight line results. Graph the straight line given by the following two points

Logarithmic Scales

 $(x_1, y_1) = (2, 5)$ $(x_2, y_2) = (5, 2)$

on a log-log plot. determine the functional relationship between x and y. (Note: The original x-y coordinates are given.)

1st method: A line in a log-log plot corresponds to a power relation of the form : $y = Cx^{p}$. Since (2,5) and (5,2) satisfy this relation we obtain: $5 = C 2^{p}$ and $2 = C 5^{p}$ Thus $\frac{5}{2^{p}} = C = \frac{2}{5^{p}}$. This implies $\frac{5^{f}}{2p} = \frac{2}{5}$ or $\left(\frac{5}{2}\right)^{p} = \frac{2}{5}$ Take log of both sides and we get $\log\left[\left(\frac{5}{2}\right)^{p}\right] = \log(\frac{3}{5}) \longrightarrow p \log(2.5) = \log(0.4)$ $\Rightarrow p = \frac{\log(0.4)}{\log(2.5)} = -1 \qquad \Rightarrow C = \frac{5}{2^{(1)}} = 10$

Example 2: (Exam 1, Fall 13, # 4)

Logarithmic Scales

Double-log Plots

 10^{4}

 10^{3}

 10^{2}

 10^{1}

 10^{0}

 10^{0}

10²

 10^{1}

 10^{3}

 10^{4}

5/10

There are several possible functional relationships between height and diameter of a tree. One particularly simple model is given by

$$H = AD^{3/4}$$

where A is a constant that depends on the species of tree, H is the height, and D is the diameter. If A = 50 plot this relationship in the double log plot below. 10^{-1}

Is your graph a straight line? If so, what is its slope?

Courider the function $H = 50 D^{3/4}$ We can construct the following table of values $H = 50 D^{3/4}$ Yn a log-log plot this power relationship becomes a straight 50 281.17 line : 1,581.14 $\log H = \log (50 D^{3/4})$ 8,891.4 $\log H = \log 50 + \log \left(D^{3/4} \right)$ $50,\infty = 5 \cdot 10^4$ log(H)= 3/4 log (D) + log (50) slope is 3/4

 \mathbb{D}

1

10

 10^{2}

103

104

Example 3:

The following table is based on a functional relationship between x and y that is either an exponential or a power function:

Logarithmic Scales

Double-log Plots

X	У
0.5	7.81
1	3.4
1.5	2.09
2	1.48
2.5	1.13

Use an appropriate logarithmic transformation and a graph to decide whether the table comes from a power function or an exponential function, and find the functional relationship between x and y.

6/10

http://www.ms.uky.edu/~ma137 Lecture 5	
Let's see if the points of the form (log 2, log ; lie on a straight lime in a log-log plot :)
logz log y (Pide:) (-0.301, 0.893) & (0.17	6_0.32)
$ \begin{array}{c c} -0.301 \\ 0.893 \\ 0 \\ 0.531 \end{array} \qquad $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$0.398 0.053 \qquad slope = \frac{0.053 - 0.531}{0.398 - 0} \approx -1.$	1
it seems that we can choose as a slope (-	
The equation of the line in point slope form is (we choose the simplest point ($(\log y - 0.53) = -1.2(\log x - 0)$	0,0.11)

Fint, let's see if there is an exponential relationship among our date points. This means that in the servi log plot we have a straight line. (0.5, 0.893) & $(1.5, 0.32) \longrightarrow slipe m = \frac{0.32 - 0.893}{1} \cong -0.573$ $\rightarrow (1.5, 0.32) \& (2.5, 0.053) \longrightarrow slipe m = 0.053 - 0.32 \cong -0.267$ Since we do not get similar values, these points de not lie on a straight Gree. $\log y - \log 10^{0.531} = -1.2 \log 2$ $\log\left(\frac{y}{10^{0.531}}\right) = \log x^{-1.2} \iff \frac{y}{10^{0.531}} = x^{-1.2}$:. $y = 10^{0.531} - 1.2$ OR $y = \frac{3.4}{x^{1.2}}$

Example 4 (Forgetting):

Ebbinghaus's Law of Forgetting states that if a task is learned at a performance level P_0 , then after a time interval t the performance level P satisfies

$$\log P = \log P_0 - c \log(t+1),$$

where c is a constant that depends on the type of task and t is measured in months.

- (a) Solve the equation for P.
- (b) Use Ebbinghaus's Law of Forgetting to estimate a student's score on a biology test two years after he got a score of 80 on a test covering the same material. Assume c = 0.3.

(a)
$$\log P = \log P_0 - c \log(t+i)$$

We want to solve for P :
 $\log P = \log P_0 - \log[(t+i)^c]$
 $\log P = \log \left[\frac{P_0}{(t+i)^c}\right]$
Hence $10 \log P = 10 \log \left[\frac{P_0}{(t+i)^c}\right]$
 $\Rightarrow \left[\frac{P(t) = \frac{P_0}{(t+i)^c}\right]$
(b) with our dota $P_0 = 80$ $c = 0.3$
 $P(t) = \frac{80}{(t+i)^{0.3}}$ hence $P(24)$

$$P(24) = \frac{80}{(24+1)^{0.3}} \approx \frac{30.46}{=}$$

2 years in
months

7/10

http://www.ms.uky.edu/~ma137 Lecture 5

Comment (about Example 4)

Below is the graph of the function $P = 80/(t+1)^{0.3}$ in standard coordinates:

Double-log Plots

t	$P = 80/(t+1)^{0.3}$	
0	80	
6	44.62	
12	37.06	χ.
18	33.072	
24	30.458	
ļ		

Logarithmic Scales

Comment (cont.d)

Below is the graph of $\log P = \log 80 - 0.3 \log(t+1)$ in a log-log plot:

Double-log Plots

Logarithmic Scales

	t	$\log(t+1)$	$\log P = \log 80 - 0.3 \log(t+1)$		
	0	0	1.903		
	6	0.845	1.650		
	12	1.114	1.569		
	18	1.279	1.519		
-	24	1.398	1.484		

Example 5 (Biodiversity):

http://www.ms.uky.edu/~ma137

Logarithmic Scales

Some biologists model the number of species S in a fixed area A (such as an island) by the **Species-Area relationship**

Lecture 5

Double-log Plots

$$\log S = \log c + k \log A,$$

where c and k are positive constants that depend on the type of species and habitat.

- (a) Solve the equation for S.
- (b) Use part (a) to show that if k = 3 then doubling the area increases the number of species eightfold.

(a) log S = log c + k log A
log S = log c + log [A^k]
log S = log [cA^k]
⇒ lo^{log S} = lo^{log [cA^k]}
⇒ [S = cA^k]
(b) Suppor k = 3 , i.e. S = cA³
For A = a. we get that S(a.) = ca.³.
However if we double the area, i.e. A = 2a., we get S(2a.) = c(2a.)³ = 8 Ca.³ = 8 S(a.)
i.e. doubling the area increases the num be of process eight fold.

10/10

8/10