

Note that
$$\int_{X\to -2}^{\infty} (-5x-22) = \frac{-8(-3)-22}{54454}$$
 have $x = \frac{1}{2}$
Moreover, $\int_{X\to -3}^{\infty} (x^2-2x-13) = (-3)^2 - 2(-3) - (3-3)^2$
Hence $\int_{X\to -3}^{\infty} f(x) = 2$
 $\int_{X\to -3}^{\infty} f(x) = 2$
 $\int_{X\to -3}^{\infty} f(x) = 2$
 $\int_{Y=2}^{\infty} x^2 \sin\left(\frac{1}{x}\right) \leq 1$.
Mode that f_n all $x : -1 \leq \sin\left(\frac{1}{x}\right) \leq 1$.
Multiply room when $\int_{X\to -3}^{\infty} x^2 = 0$ and f_n
 $\int_{X\to -3}^{\infty} x^2 \sin\left(\frac{1}{x}\right) \leq x$
 $\int_{X\to -3}^{\infty} x^2 \sin\left(\frac{1}{x}\right) \leq x$
 $\int_{X\to -3}^{\infty} x^2 \sin\left(\frac{1}{x}\right) \leq 1$.
Multiply room when $\int_{X\to -3}^{\infty} x^2 = 0$
Hence $\int_{X\to -3}^{\infty} x^2 \sin\left(\frac{1}{x}\right) = 0$
 $\int_{X\to -3}^{\infty} x^2 \sin\left(\frac{1}{x}\right) = 0$
See the gisture on guenious frage!
 $\int_{X\to -3}^{\infty} x^2 \sin\left(\frac{1}{x}\right) = 0$
See the gisture on guenious frage!
 $\int_{X\to -3}^{\infty} x^2 \sin\left(\frac{1}{x}\right) = 0$
 $\int_{X\to -3}^{\infty} x^2 \cos\left(\frac{1}{x}\right) =$

$$\begin{aligned} & \text{Here } x \text{ defined the construction of the construction o$$

We need the height and base of the triangle and the rodus of the circle: $P \xrightarrow{H}_{Q} RH = r \cos(\frac{\theta_{2}}{2})$ $RH = r \sin(\frac{\theta_{2}}{2})$ $RH = r \sin(\frac{\theta_{2}}{2})$

Hence
$$\frac{A(\theta)}{B(\theta)} = \frac{\frac{1}{2}\pi r^{2} \sin^{2}(\frac{\theta}{2})}{r^{2} \sin(\frac{\theta}{2}) \cos(\frac{\theta}{2})} =$$

$$= \frac{1}{2}\pi \cdot \frac{\sin(\frac{\theta}{2})}{\cos(\frac{\theta}{2})} = \frac{1}{2}\pi \tan(\frac{\theta}{2})$$
Hence $\lim_{\theta \to 0} \frac{A(\theta)}{B(\theta)} = \lim_{\theta \to 0} \frac{1}{2}\pi \tan(\frac{\theta}{2}) = 0$
As $\tan_{\theta} = a \operatorname{continuous} \operatorname{function} \operatorname{and} \tan(\theta) = 0$

The Sandwich (Squeeze) Theorem More About Limits Trigonometric Limits Digression on Trigonometric and Exponential Functions

Trigonometric and Exponential Functions

We will sometimes use the double angle formulas

$$cos(2\alpha) = cos^{2} \alpha - sin^{2} \alpha \qquad sin(2\alpha) = 2 sin \alpha cos \alpha$$

= $2 cos^{2} \alpha - 1$ and
= $1 - 2 sin^{2} \alpha$

which are special cases of the following addition formulas

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

• What about $sin(\alpha/2)$ and $cos(\alpha/2)$? With some work

$$\cos(\alpha/2) = \pm \sqrt{\frac{1+\cos \alpha}{2}}$$
 $\sin(\alpha/2) = \pm \sqrt{\frac{1-\cos \alpha}{2}}$

(the sign (+ or –) depends on the quadrant in which $\frac{\alpha}{2}$ lies.)

Lecture 15

• Is there a 'simple' way of remembering the above formulas?

http://www.ms.uky.edu/~ma137

Euler's Formula

Euler's formula states that, for any real number x,

$$e^{ix} = \cos x + i \sin x,$$

where *i* is the imaginary unit $(i^2 = -1)$.

• For any α and β , using Euler's formula, we have

More About Limits

$$\cos(\alpha + \beta) + i\sin(\alpha + \beta) = e^{i(\alpha + \beta)}$$

= $e^{i\alpha} \cdot e^{i\beta}$
= $(\cos \alpha + i\sin \alpha) \cdot (\cos \beta + i\sin \beta)$
= $(\cos \alpha \cos \beta + i^2 \sin \alpha \sin \beta)$

 $+i(\sin \alpha \cos \beta + \cos \alpha \sin \beta).$

The Sandwich (Squeeze) Theorem

Digression on Trigonometric and Exponential Functions

Trigonometric Limits

• Thus, by comparing the terms, we obtain

http://www.ms.uky.edu/~ma137

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

 $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta.$

Lecture 15

15/20

More About Limits

The Sandwich (Squeeze) Theorem Trigonometric Limits Digression on Trigonometric and Exponential Functions

Approximating cos x

Consider the graph of the polynomial

$$T_{2n}(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^{n-1} \frac{x^{2(n-1)}}{(2n-2)!} + (-1)^n \frac{x^{2n}}{(2n)!}$$

As *n* increases, the graph of $T_{2n}(x)$ appears to approach the one of $\cos x$. This suggests that we can approximate $\cos x$ with $T_{2n}(x)$ as $n \to \infty$.

The Sandwich (Squeeze) Theorem Trigonometric Limits Digression on Trigonometric and Exponential Functions

Digression on Trigo

More About Limits

Approximating e^{x}

Consider the graph of the polynomial

$$T_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{x^n}{n!}.$$

As *n* increases, the graph of $T_n(x)$ appears to approach the one of e^x . This suggests that we can approximate e^x with $T_n(x)$ as $n \to \infty$.

More About Limits

Trigonometric Limits Digression on Trigonometric and Exponential Functions

The Sandwich (Squeeze) Theorem

Approximating $\sin x$

Consider the graph of the polynomial

$$T_{2n+1}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

As *n* increases, the graph of $T_{2n+1}(x)$ appears to approach the one of sin *x*. This suggests that we can approximate sin *x* with $T_{2n+1}(x)$ as $n \to \infty$.

More About Limits

The Sandwich (Squeeze) Theorem Trigonometric Limits Digression on Trigonometric and Exponential Functions

Idea of Why Euler's Formula Works

To justify Euler's formula, we use the polynomial approximations for e^x , $\cos x$ and $\sin x$ that we just discussed. We start by approximating e^{ix} :

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \frac{(ix)^7}{7!} + \frac{(ix)^8}{8!} + \cdots$$

= $1 + ix - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} - \frac{x^6}{6!} - \frac{ix^7}{7!} + \frac{x^8}{8!} + \cdots$
= $\left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} + \cdots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots\right)$
= $\cos x + i \sin x$

Curiosity: From Euler's formula with $x = \pi$ we obtain

$$e^{i\pi} + 1 = 0$$

which involves five interesting math values in one short equation.