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The Sandwich (Squeeze) Theorem
Suppose we want to calculate  lim e~ cos(10x).
X—00
We soon realize that none of the rules we have learned so far apply.
Although lim e =0, we find that lim cos(10x) does not
X—r00 X—r00

exist as the function cos(10x) oscillates between —1 and 1.

We need to employ some other techniques. One of these
techniques is to use the Squeeze (Sandwich) Theorem.

Sandwich (Squeeze) Theorem

Consider three functions f(x), g(x) and h(x) and suppose for all x |
in an open interval that contains ¢ (except possibly at ¢) we have |

f(x) < g(x) < h(x).

I’f )!gncf(x) =L= )!@C h(x) then )![)ncg(x) =L
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More About Limits

From the inequality y s
—1 < cos(10x) <1
it follows that (as e™* > 0, always)

—e ¥ < e ¥cos(10x) < e™*

Then, since

our function g(x) = e *cos(10x)
is squeezed between the functions
f(x) = —e ™ and h(x) = e,
which both go to 0 as x tends to
infinity.

So by the Squeeze Theorem it follows that

lim e *cos(10x) = 0.
X—>00
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A Example 1

nline Homework HW10, # 2)

Suppose —8x — 22 < f(x) < x> —2x — 13.

Use this to compute  lim_f(x).
x——=3
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Fundamental Trigonometric Limits

The following two trigonometric limits are important for developing
the differential calculus for trigonometric functions:

. sinx . 1—-cosx
lim — =1 lim —— =0
x—0 X x—0 X

@ Note that the angle x is measured in radians.
@ We will prove both statements.

@ The proof of the first statement uses a nice geometric argument
and the sandwich theorem.

@ The second statement follows from the first.
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SEEsin X
lim —
x—0 X

Proof that

@ Since we are interested in the limit as x — 0, we can
restrict the values of x to values close to 0.

@ We split the proof into two cases, one in which 1
0 < x < /2, the other in which —m/2 < x <0.

@ Since f(x) = sinx/x is an even function og
(indeed, it is the quotient of two odd functions!) RS
we only need to study the case 0 < x < /2. '%: 8
In this case, both x and sin x are positive. ¢ - cos x 1\ B

We draw the unit circle together with the triangles OAD and OBC. The
angle x is measured in radians. Since OB = 1, we find that

OA = cos x AD = sinx
Furthermore the picture illustrates that

area of OAD < area of sector OBD < area of OBC

arc length of BD = x BC =tanx.

The Sandwich (Squeeze) Theorem
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More About Limits
The area of a sector of central angle x (in radians) and radius r is 1r2x.

1 1 1
Therefore, Ecosx-sinxg5-12-x§~2—~1-tanx.

Dividing this pair of inequalities by 1/2sinx yields

X 1
cosx < — <
sin X

cosx

Solving now for sin x/x we obtain

sin x 1
cosx < — <
X

cosx’

We can now take the limit as x — 0" and find that

lim cosx =1 lim =1.
x—0F x—0*t COS X
. . . . sinx
Finally the Sandwich Theorem yields lim — =1.
. x—0t X
sin x

By symmetry we also have that lim —— =1.
x—0— X
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Proof that

Multiplying both numerator and denominator of f(x) = (1 — cosx)/x
by 1 + cos x, we can reduce the second statement to the first:

.1 —cosx 1+ cos x
[im — =
x—0 X

1 — cosx

[im

x—0 X 1+ cosx
1 — cos? x

im ———

x—0 x(1 + cos x)
. sin? x

= |lim ——=

x—0 x(1 + cos x)

. sinx

= |im - lim

x—0 X x—0 1 + cos x

= 1-0=0

sin x
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Example 3:| (Online Homework HW10, # 7)
Csin(40)sin(80) ’ h
6—0 62 '

More About Limits

Evaluate
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Exa mpl I e 4:

(Online Homework HW10, # 10)
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x— O = - Cos 5)() %‘\Y\(GX)
dow (6x)  xe 2in LX.

Cos (éx)

Digression on Trigonometric and Exponential Functions
(Neuha user, Exa mple 1 (c), p- 126)

. secx—1
Evaluate |lim ——.
x—0 X Secx

Example 5
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Example 6:| (Online Homework HW10, # 13)

Evaluate lim 3(sin x — cos X)
x—m/4  5cos(2x)

http://www.ms.uky.edu/ " mal37 Lecture 15

/OA\ 3 < n X — Cos X) 3[ Sn (%) - C‘OCM) 7 More About Limits ;::goiir:ﬁxrf: I(.|Sn‘1:1t(:EZE) i
e = /—/—"('-,'—_' Digression on Trigonometric and Exponential Functions
X — 7Y > 5 cos (2 —J-L-) 5
7y 5 cos(2) T “ Example 7:| (Online Homework HW10, # 14)
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lim —=%
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Trlgonometnc and Exponentlal Functions _Euler’s Formula

@ We will sometimes use the double angle formulas Euler s formula states that for any reaI number X,
cos(2a) = cos’a — sin? o sin(2a) = 2sinacosa (efx — cosx + isin XJ
— 2
= 2cos a ) 1 and where i is the imaginary unit (i* = —1).
= 1-2sin“«

. . . . e F ing Euler’

which are special cases of the following addition formulas or any o and f, using Euler's formula, we have

cos(a + ) = cosacos 3 — sinasin 3 cos(cx + ) + isin(o + ) = €1
eia . eiﬂ

sin(a + 3) = sinacos 3 + cos asin 3. (cosa+ isina) - (cos B+ isin 8)

o What about sin(a/2) and cos(c/2)? With some work _ (cosarcos 5+ i2sinasin B)
| 1 1-— : +i(sin aucos B 4 cos acsin 3).
cos(a)2) = 1) =22 sin(a)/2) = £/ ¢ | _
2 2 @ Thus, by comparing the terms, we obtain
. . (07
(the sign (+ or —) depends on the quadrant in which > lies.) cos(a + ) = cosa cos B — sin asin 8
o Is there a ‘simple’ way of remembering the above formulas? sin(cr+ ) = sinvcos  + cos cusin
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Approximating cosx

Consider the graph of the polynomial

x2 x4 1 X2(n—l) ., x2n
_..._|_( 1) ——( 2)|+( 1) (—én_)|

Tzn(X):1—“E+Z{
As n increases, the graph of T,,(x) appears to approach the one of cos x.
This suggests that we can approximate cos x with Ton(x) as n — oo.
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Approximating  sinx

Consider the graph of the polynomlal

3 5 2n—1

; %_ '+('1)n_1(2);—1)!+(_1)n(2n+1)!'

As n increases, the graph of T»,.1(x) appears to approach the one of
sin x. This suggests that we can approximate sin x with Ta,41(x) as n — oco.
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X

Apprommatmg

Consider the graph of the polynomial
2 3 4 n—1 n
X X X X
T.(x) =1 a4
(x)=1+x+ 5 +3'+ + +(n—1)!+n|
As n increases, the graph of T,(x) appears to approach the one of &*.
This suggests that we can approximate €* with T,(x) as n — oo.
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Idea of Why Euler’s Formula Works_

To justify Euler's formula, we use the polynomial approximations for ex
cos x and sin x that we just discussed. We start by approximating e™

o ()2 ()R ()Y ()5 (x)° ()T (iX)°
e = 14+ ot t T T 6! 7 T
2 ix3 x4 ix® x0 ixT  x8

14 XX X Xy

T T T s el T s

= CcosX + isinx

Curiosity: From Euler's formula with x = 7 we obtain
e™4+1=0

which involves five interesting math values in one short equation.
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