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Implicit Differentiation

So far, we have considered | functions of
which define y explicitly as a function of x.

It is also possible to define y implicitly as a function of x, as in the
following equation:

X3+ y® = 6xy (1)
Here, y is still given as a function of x (i.e., y is the dependent
variable), but there is no obvious way to solve for y.

Below are the graphs of three such functions related to equation
(1), dubbed the folium of Descartes.
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Implicit Differentiation

| When we say that f is implicitly defined by the equation given in (1),
we mean that the equation

X34 [F(X)]P = 6xf(x)
is true for all values of x in the domain of f.

Fortunately, there is a very useful technique, based on the chain rule,
that will allow us to find dy/dx for implicitly defined functions.

This technique is called implicit differentiation.

We summarize the steps we take to find dy/dx when an equation
defines y implicitly as a differentiable function of x:

1. Differentiate both sides of the equation with respect to x,
keeping in mind that y is a function of x.

[Note: differentiating terms involving y typically requires the chain rule.]

2. Solve the resulting equation for dy/dx.
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(a) Find y’ if y is implicitly defined by x3 + y3 = 6xy.

(b) Find an equation for the tangent line to the folium of Descartes
x3 + y® = 6xy at the point (3,3).
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[Example 2: (Online Homework HW14, #2)

Given xy + 2x + 3x% = —4;
(a) Find y’ by implicit differentiation.

Implicit Differentiation

(b) Solve the equation for y and differentiate to get y’ in terms of x.
(The answers should be consistent!)
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Implicit Differentiation

Find dy/dx by implicit differentiation if
X

= 2xy/.
xy +1 e
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[Example 4:] (Online Homework HW14, # 6)

Implicit Differentiation

Use implicit differentiation to find an equation of the tangent line
to the curve (called cardioid)

x2 +y? = (2x2 +2y? — x)?
at the point (0,1/2).
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We now prowde a proof of the generahzed form of the power rule
when the exponent r is a rational number: %(X’) =0
We write r = p/q, where p and g are integers and are in lowest
terms. (If g is even, we require x and y to be positive.) Then
y=x" iy y:xp/q VR, y9 = xP.

Differentiating both sides of y9 = xP with respect to x, we find that

1Y = e
dx
Hence
EjX — Bxpfl =B it 2 A = BXP~14(p—P/q)
dx a.ye g (Xp/q)qfl qg xP—Plda g
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