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Assume that y = f(x) is differentiable at x = a; then
L(x) =f(a)+ f'(a)(x — a)

is the tangent line approximation, or linearization, of f at x = a.

Geometrically, the linearization of f at x = a is the equation of the
tangent line to the graph of f(x) at the point (a,f(a)).

If |x — a| is sufficiently small, then f(x) can be linearly approximated
by L(x); that is,

f(x) =~ f(a) + f'(a)(x — a).

This approximation is illustrated in the
picture on the right:
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(a) Find the linear approximation of f(x) —

\/>_<atx:a.

(b) use your answer in (a) to find an approximate value of v/26.
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Linear Approximations |

[Example 2:] (Online Homewo

Find the linearization L(x) of the function g(x) = xf(x?) at
x = 2 given the following information:

fQ)=1 Ff@2)=10 f(4)=5
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Exeilrmple 3 7(Wl\r!gfahrauser,

Plant Biomass: Suppose that a certain plant is grown along a
gradient ranging from nitrogen-poor to nitrogen-rich soil.

1 34, p. 210)

Experimental data show that the average mass per plant grown in
a soil with a total nitrogen content of 1000 mg nitrogen per kg of
soil is 2.7 g and the rate of change of the average mass per plant
at this nitrogen level is 1.05x1073 g per mg change in total
nitrogen per kg soil.

Use a linear approximation to predict the average mass per plant
grown in a soil with a total nitrogen content of 1100 mg nitrogen
per kg of soil.
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Suppose N = N(t) represents a populatlon size at time t and the
rate of growth as a function of N is g(N).

Find the linear approximation of the growth rate at N = 0.

[Hint: We can assume that g(0) = 0. Indeed, when the population has size N = 0, its growth rate will be zero.]

[Remark: Your answer should show that for small population sizes, the population grows approximately exponentially.]
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Plant Biomass: Suppose that the specuflc growth rate of a plant
is 1%; that is, if B(t) denotes the biomass at time t, then

Suppose that the biomass at time t = 1 is equal to 5 grams.

Use a linear approximation to compute the biomass at time t = 1.1.
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Linear Approximations E:
(Optional: Taylor Polynomials)

Higher Order Approximations

The tangent linear approximation L(x) = f(a) + f’(a)(x — a) is the
best first-degree (linear) approximation to f(x) near x = a because
f(x) and L(x) have the same value and the same rate of change at a

L(a) = f(a) E(a)— f(a):

For a better approximation than a linear one, let’s try to find

better approximations by looking for an nth-degree polynomial
T.—a+clc—a)+elc—aft - tcbc—a)

such that T, and its first n derivatives have the same value at
x = a as f and its first n derivatives at x = a.
We can show that the resulting polynomial is

T = £(a) + /(a)(x — ) + (x—a)".

It is called the nth-degree Taylor polynomial of f centered at x = a.
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centered at |

Linear Approximations

Approximation of cos X
Consider the graph of the polynomial

x2 X

Ton(x) =1 - E'{‘E - m+(—1)n—|

As n increases, the graph of T,(x) appears to approach the one of cos x.
This suggests that we can approximate cos x with T,(x) as n — oo.
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Linear Approximations
(Optmnal Taylor Polynomnals)

Approxnmatlon of centered at 2=

sin x i
Consider the graph of the polynomial

X3 5 2n—1 X2n+1

Tona(x) =x = 3+ 37—+ (—1)"*1(-;,,_—1)1 s TR

As n increases, the graph of Thni1(x) appears to approach the one of
sinx. This suggests that we can approximate sinx with Tz,41(X) as n — oo.
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pprosimaton o<

Consider the graph of the polynomial

2 X3 X4

b%
T.(x) =1 il AT
(x) = txt ot gttt
As n increases, the graph of T,(x) appears to approach the one of e*.

This suggests that we can approximate X with T,(x) as n — oo.
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Linear Approximations
: Taylor Polynomials)

Google parent Alphabet Inc. reached a record share price a day
after reporting better-than-projected quarterly revenue and profit
fueled by increased ad sales and a tighter lid on costs. [...] The
actual figure that the company announced for the share buyback
was unusually specific: $5,099,019,513.59. Turns out, those
numbers correspond to the square root of 26, or the number of
letters in the English alphabet.

Let f(x) = /X and a = 25. The Sth-degree Taylor polynomial of f centered at 25 can be shown to be

1 (x—25)} (25— (x—25)°

1 1
(x—25)%+ -
000 50, 000 2,000, 000 71,428, 571.43

1
To(x) = 5+E(x~25)— "

We can then check that

il 1 1 il i
V26~ T5(26) =5+ — — —— + = +
10 1, 000 50, 000 2,000, 000 71,428,571.43

= 5.099019514

This means that we overestimated Alphabet Inc. buyback by 41¢.

"Ex;\;h'ple 6: ,(,B,I,O,?”lbfrg ?@@951,10/23/ 15) T
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