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Increasmg and Decreasmg Functlons 7
A function f is said to be |ncreasmg when |tases and decreasmg
when its graph falls. More precisely, we say that
Definition 4
f is (strictly) increasing on an interval / if
f(x1) < f(x2) whenever x3 <xzin/
f is (strictly) decreasing on an interval / if
f(x1) > f(x2) whenever x3 <xzin/

y

X2

0 X1 x2

f is decreasing
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f is increasing
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* First Derlvatlve Test for Monotomcnty

Theorem (First Derivative Test for Monotonicity)

Suppose f is continuous on [a, b] and differentiable on (a, b).
(a) Iff'(x) >0 for all x € (a,b), then f is increasing on [a, b].
(b) If f'(x) <O for all x € (a, b), then f is decreasing on [a, b].

Proof: Suppose f/(x) > 0 on an interval /. We wish to show that f(x;) < f(xp) for any pair x; < xo in [a, b].

Let x; and x be any pair of point in [a, b] satisfying x; < xp. Then f is continuous on [x1, x5] and differentiable
on (x1, x2). We can therefore apply the MVT to f defined on [x1, xp]: There exists a number ¢ € (x1, xp) such that

f(x1) — f(x2)

X2 — X1

=f(e)

Now, f/(c) > 0 as ¢ € [x1, x2] C [a, b]; so
flx2) — f(x1)

X2 =X

>0

so f(x2) — f(x1) > 0, since xp — x; > 0. Therefore, f(x;) < f(x2).
Because x; and xy are arbitrary numbers in [a, b] satisfying x; < x, it follows that f is increasing on the whole interval.

The proof of part (b) is similar.
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Theorem (First Derivative Test for (Local) Extrema)
If f has a critical value at x = ¢, then

@ f has a local maximum at x = c if the sign of f' around c is
tawen

©

@ f has a local minimum at x = c if the sign of f' around c is
e e

fx)>0

(b) Local minimum
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(a) Local maximum

http://www.ms.uky.edu/~mal37




ConcléVity

The second derivative can also be used to help sketch the graph of a
function. More precisely, the second derivative can be used to determine
when the graph of a function is concave upward or concave downward.

The graph of a function y = f(x) is concave upward on an interval
[a, b] if the graph lies above each of the tangent lines at every point in
the interval [a, b]. The graph of a function y = f(x) is concave
downward on an interval [a, b] if the graph lies below each of the
tangent lines at every point in the interval [a, b].

Y b4

a b s a b s

graph of function concave downward on [a, b]

graph of function concave upward on [a, b]
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for Concavity

Consider a function f(x).

If (x) > 0 over an interval [a, b], then the derivative f'(x) is
increasing on the interval [a, b]. That means the slopes of the
tangent lines to the graph of y = f(x) are increasing on the
interval [a, b]. From this it can be seen that the graph of the
function y = f(x) is concave upward.

If f7(x) < 0 over an interval [a, b]. Then the derivative f'(x) is
decreasing on the interval [a, b]. That means the slopes of the
tangent lines to the graph of y = f(x) are decreasing on the
interval [a, b]. From this it can be seen that the graph of the
function y = f(x) is concave downward.
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eTest for (Local) Extrema

Second Deriyqtiv

Theorem (Second Derivative Test for (Local) Extrema)

Suppose that f is twice differentiable on an open interval
containing c.

@ Iff'(c) =0 and f"(c) <0, then f has a local max. at x = c. |

@ Iff'(c) =0 and f"(c) > 0, then f has a local min. at x = c.

Concave down

Concave up

c oS c
f has a local max at ¢ f has a local min at ¢
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 Inflection Points

A point (c, f(c)) on the graph is called a point of inflection if the
graph of y = f(x) changes concavity at x = C. That is, if the
graph goes from concave up to concave down, or from concave
down to concave up.

If (¢, f(c)) is a point of inflection on the graph of y = f(x) and if
the second derivative is defined at this point, then f”(c) = 0.

Thus, points of inflection on the graph of y = f(x) are found
where either f/(x) = 0 or the second derivative is not defined.

However, if either f”(x) = 0 or the second derivative is not
defined at a point, it is not necessarily the case that the point is a
point of inflection. Care must be taken.
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" About Graphing a Function

Using the first and the second derivatives of a twice-differentiable Find the intervals where the function  f(x) = x> —3x2 +1
function, we can obtain a fair amount of information about the function. increasing and the ones where it is decreasing. Use this

We can determine intervals on which the function is increasing, information to sketch the graph of = f(x) = x> —3x?+ 1.

decreasing, concave up, and concave down. We can identify local
and global extrema and find inflection points.

To graph the function, we also need to know how the function
behaves in the neighborhood of points where either the function or
its derivative is not defined, and we need to know how the function
behaves at the endpoints of its domain (or, if the function is
defined for all x € R, how the function behaves for x — £00).

A line y = b is a horizontal asymptote if either
lim: )= b or lim:. fc)—h
X—+00 X—>—00
A line x = c is a vertical asymptote if
lim_ £ — -Fco or lim f(x) = £o0
x—ct x—c~
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]P/QQ e - 3 <x+?).2— —_> ‘P”(x)z o <x+¥)_3, () Let h(x) = x?e™*.

V) R (a) On what intervals is h increasing or decreasing?

e (b) At what values of x does h have a local maximum or minimum?
[ ey -c . .
NN $ N (c) On what intervals is h concave upward or downward?
(x i) M O (d) State the x-coordinate of the inflection point(s) of h.
(e) Use the information in the above to sketch the graph of h.
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The graph of the derivative f’ of a function f is shown.

(a) On what intervals is f increasing or decreasing?

(b) At what values of x does f have a local maximum or minimum?
(c) On what intervals is f concave upward or downward?

(d) State the x-coordinate of theyinflection points of f.
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7‘Exéﬁrnple 8: (Onlme Homework HW18 #14) .

Suppose that on the interval /, f(x) is positive and concave up.
Furthermore, assume that f”(x) exists and let g(x) = (f(x))?. Use
this information to answer the following questions.

(a) f"(x) > on I.

(b) g”"(x) = 2(A2? + Bf"(x)), where A=
(c) g"(x) > on /.

(d) g(x)is on /.

and B=___
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