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L’Hépital’s Rule

Heuristics

We ha(ve often encountered the situation in which we had to compute
Nl (0o

x—a g(x)

and we had that both the following limits were zero

lim f(x)=0  and

X—a

lim ) = 0.
Using a linear approximation at x = a, we find that, for x close to a
f(x) _ f(a)+f'(a)(x —a)
g(x)  &(a) +g'(a)(x —2)
Since f(a) = g(a) = 0 and x # a, the right-hand side is equal to
f'(a)(x —a) _ f'(a)
g'(a)(x-a)  g'(a)
provided that f’(a)/g’(a) is defined. We therefore hope that something like
i 700 _ 12
‘ em et olla)
holds when £(a)/g(a) is of the form 0/0 and f’(a)/g’(a) is defined. In

fact, something like this does hold; it is called I’Hépital’s rule.
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Theory

Examples

L’Hopital’s Rule

Suppose that f and g are differentiable functions and that

Ul =0 el o a - im0 g Tty

Then
lim f—(Xl = |im f’(x)
X—>a g(x) X—a g’(x)

provided the second limit exists. 1

L'Hdpital’s rule can actually be applied to calculate limits for seven
kinds of indeterminate expressions

0 o
T o

(Note that I'H8pital's rule works for a = +00 or —oo as well.)

00 — 00 05 15 ool
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L’Hépital’s Rule

.
Reduction to 0/0 or co/oo Form
0- oo Suppose we have to compute Xli_r)na f(x)g(x) where Xli_r)na f(x) = 0and Xll)na g(x) = oo. To apply
I'Hépital’s rule to this kind of limit write it in one of the two forms

. ) g
xIEQa el = xlﬂa 1/g(x) x'ﬂ]a 1/F(x)

In the first case the ratio is 0/0, whereas in the second case the ratio is 00 /o0. Usually only one of the

two expressions is easy to evaluate.

R g - : = . e '
©0 — oo Suppose we have to compute Xlﬂ\a[f(x) g(x)] where xlﬂa f(x) = oo and Xlgna g(x) = oco. To apply

I'Hépital’s rule to this kind of limit write it in one of the two forms
. ) g(x) ! f(x)
Jim 1) g09] = i, 7(:) (1 - o))" Xlgnag(x)(a =

and hope that the limit is of the form 0 - co.

00 190 o0 Suppose we have to compute Ii_r)n [f(x)]g(x), which becomes of the form 0°, 1°° or 0o?. The key to
X a

solving these limits is to write them as exponentials
Jim [£(x)]E) = Jim_exp { In [f(x)]g(x)} = lim exp { g(x) - In f(x)} = exp [ Jim_ (g(x) - In f(x))] ;

The last step, in which we interchanged lim and exp, uses the fact that the exponential function is continuous.
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Theory
Examples

' EXample 1: (Nuehauser p. 2535 J

x?2
Evaluate [lim g
x—3 X — 3

L’Hépital’s Rule
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' (Nuehauser p. 253)'

Evaluate lim
x—0

L’Hépital’s Rule
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[ Theory

L’Hépital’s Rule Examples /éﬂ , ?é f

: ory. | Y
Evaluate lim ﬂ. ‘ N y // Z/O/D'M e
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Theory

L’Hépital’s Rule ‘ Examples

X— oo

) e DA AN A #M(—b_
Evaluate lim x.e™, £ O //o/w/—wé wle .

X—>00

X—>00

What about  lim x'3. e ? (Online Homework HW?20, #5) ‘ b /
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Theory
| Examples

[Example 5:] (Online Homework HW20, # 3)

L’Hépital’s Rule

Evaluate lim 7/x-Inx.
x—07t
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Theory
Examples

Example 6:] (Neuhauser, Example 9, p. 257)

Evaluate lim x — v/x2 + x.

X—>00

L’Hépital’s Rule
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Theory
Examples

[Example 73] (Online Homework HW20, # 4)

Evaluate lim x*.
x—0t

L’Hépital’s Rule
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P | * Theory
L’Hépital’s Rule b Examples

7E7xa7rr;pié 8 ,(,Neub?,,LEeL_, qui)lem 62p259)

X—00

X
S . . Cc .
Use I'Hopital’s rule to find  lim (1 + —) where ¢ is a constant.
D%

What about  lim 3x(In(x + 3) — In x) 7 (Online Homework HW20, #10)
X—00
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