

L'Hôpital's RuleTheory ExamplesExample 1:(Nuehauser, p. 253)Evaluate $\lim_{x \to 3} \frac{x^2 - 9}{x - 3}.$	lim $\frac{x^2-9}{x-3} = \frac{0}{0}$ if we use direct evaluation Hence we can apply l'Hôpital's rule. We obtain:
5/12 http://www.ms.uky.edu/~ma137	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$
L'Hôpital's Rule Theory Examples Example 2: (Nuchauser, p. 253) Evaluate $\lim_{x \to 0} \frac{e^x - 1}{x}$.	$\lim_{X \to 0} \frac{e^{X} - 1}{x} = \frac{e^{\circ} - 1}{\circ} = \frac{0}{\circ}$ Hence we can use l'Hôpital's rule: $\lim_{X \to 0} \frac{e^{X} - 1}{x} = \lim_{X \to 0} \frac{e^{X}}{1} = e^{\circ} = 1$ $=$
6/12 http://www.ms.uky.edu/~ma137 Lecture 33	

L'Hôpital's RuleTheory ExamplesExample 3:(Neuhauser, Example 3, p. 255)Evaluate $\lim_{x \to 0} \frac{1 - \cos x}{x^2}.$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{rcl} $
7/12 http://www.ms.uky.edu/~ma137 Lecture 33	$ule gain= lin \frac{\cos x}{2} = \frac{1}{2}x \to 0Note that inSection 3.4 wegave a geometricargument for lin \frac{\sin x}{x} = 1$
Errory Example 4: (Neuhauser, Problem # 25, p. 259)Evaluate $\lim_{x\to\infty} x \cdot e^{-x}$.What about $\lim_{x\to\infty} x^{13} \cdot e^{-x}$? (Online Homework HW20, # 5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
8/12 http://www.ms.uky.edu/~ma137 Lecture 33	$\frac{HW_{20}}{HW_{20}} \stackrel{\#5}{=} : \qquad \begin{array}{c} \lim_{k \to \infty} & \frac{x^{13}}{e^{x}} = \frac{\infty}{\infty} = use l'Ho^{2}pikel's \\ ule = & \lim_{k \to \infty} & \frac{13 x^{12}}{e^{x}} = \frac{\infty}{\infty} = \dots = use \\ \underset{k \to \infty}{\text{many more times } l'Ho^{2}pikel's ule b \; get \\ = & \lim_{k \to \infty} & \frac{13!}{e^{x}} = & \frac{13!}{\infty} = & 0 \end{array}$

$$\begin{aligned}
&\lim_{x \to \infty} 3x \left[\ln(x+3) - \ln x \right] = c_0 \left(c_0 - c_0 \right) \\
&= \lim_{x \to \infty} 3x \cdot \ln\left(\frac{x+3}{x}\right) = \lim_{x \to \infty} 3 \cdot \ln\left(\frac{x+3}{x}\right)^x = \\
&= 3 \cdot \ln\left[\lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x \right] = 3 \ln e^3 = 3 \cdot 3 = 9 \\
&= 3 \\
&\left(by \text{ the first part} \right)
\end{aligned}$$