Antiderivatives

MA 137 — Calculus 1 with Life Science Applications **Antiderivatives** (Section 5.10)

> Department of Mathematics University of Kentucky

http://www.ms.ukv.edu/~ma137

Antiderivatives

1/15

Antiderivatives

Many mathematical operations have an inverse. For example, to undo addition we use subtraction. To undo undo exponentiation we take logarithms. The process of differentiation can be undone by a process called *antidifferentiation*.

Lectures 35 & 30

Theory

To motivate antidifferentiation, suppose we know the rate at which a bacteria population is growing and want to know the size of the population at some future time. The problem is to find a function F whose derivative is a known function f.

Definition

A function F is called an antiderivative of f on an interval I if F'(x) = f(x) for all $x \in I$.

Warning: Although we will learn rules that allow us to compute antiderivatives, this process is typically **much more** difficult than finding derivatives; in addition, there are even cases where it is impossible to find an expression for an antiderivative.

From Differential to Integral Calculus

Roughly speaking, Calculus has two parts:

differential calculus and integral calculus

At the core of **differential calculus** (which we have been studying so far) is the concept of the instantaneous rate of change of a function. We have seen how this concept can be used to locally approximate functions, to identify maxima and minima, to decide stability of equilibria, etc.

Integral calculus, on the other hand, deals with accumulated change, and, thereby, recovering a function from a mathematical description of its instantaneous rate of change. This recovery process, interestingly enough, is related to the concept of finding the area enclosed by a curve. This will be studied in Chapter 6 (and in the follow up course, MA 138).

http://www.ms.uky.edu/~ma137 Lectures 35 & 36

Antiderivatives Theory

Corollaries of MVT

Two corollaries of the Mean Value Theorem will help us in finding antiderivatives. The first one is Corollary 2 from Section 5.1 (p. 222 of Neuhauser's textbook):

Corollary 2

If f is continuous on [a, b] and differentiable on (a, b), with f'(x) = 0 for all $x \in (a, b)$, then f is constant on [a, b].

Corollary 2 is the converse of the fact that f'(x) = 0 whenever f(x) is a constant function. Corollary 2 tells us that all antiderivatives of a function that is identically 0 are constant functions.

Corollary 3 says that functions with identical derivative differ only by a constant; that is, to find all antiderivatives of a given function, we need only find one.

Corollary 3

If F(x) and G(x) are antiderivatives of the continuous function f(x) on an interval I, then there exists a constant c such that G(x) = F(x) + cfor all $x \in I$.

Proof: Since F(x) and G(x) are both antiderivatives of f(x), it follows that F'(x) = f(x) = G'(x) for all $x \in I$. Thus [F(x) - G(x)]' = F'(x) - G'(x) = f(x) - f(x) = 0.

4/15

AntiderivativesTheory
ExamplesThe Indefinite IntegralNotationThe indefinite integral of f(x), denoted by
 $\int f(x) dx$ Tepresents the general of f(x), denoted byColspan="2">Of f(x) dxrepresents the general antiderivative of f(x).For example, $\int 3x^2 dx = x^3 + c$, where c is any constant.Rules for Indefinite IntegralsA. $\int k f(x) dx = k \int f(x) dx$

Antiderivatives Theory Example 1: (Online Homework HW22, # 2)

http://www.ms.uky.edu/~ma137

B. $\int [f(x) \pm g(x)] dx = \left[\int f(x) dx \right] \pm \left[\int g(x) dx \right]$

http://www.ms.uky.edu/~ma137 Lectures 35 & 36

Find the antiderivative F of $f(x) = 5x^4 - 2x^5$ that satisfies F(0) = -10.

Lectures 35 & 36

Antiderivatives Theory

Basic Indefinite Integrals

The formulas below can be verified by differentiating the righthand side of each expression. The quantities a and c below denote (nonzero) constants.

1. $\int x^{n} dx = \frac{1}{n+1}x^{n+1} + c \qquad n \neq -1$ 2. $\int \frac{1}{x} dx = \ln |x| + c$ 3. $\int e^{ax} dx = \frac{1}{a}e^{ax} + c$ 4. $\int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c$ 5. $\int \cos(ax) dx = \frac{1}{a}\sin(ax) + c$

Warning: We do not have simple derivative rules for products and quotients, so we should not expect simple integral rules for products and quotients.

6/15

http://www.ms.uky.edu/~ma137 Lectures 35 & 36

$$F(x) = \int (5x^4 - 2x^5) dx =$$

$$= 5 \int x^4 dx - 2 \int x^5 dx$$

$$= 5 \cdot \left[\frac{1}{5}x^5\right] - 2 \left[\frac{1}{6}x^6\right] + C$$

$$= x^5 - \frac{1}{3}x^6 + C$$
denois bes all autideivatives of $f(x)$.
We want the one such that $F(0) = -10$. Thus
$$-10 = F(0) = 0^5 - \frac{1}{3}0^6 + C \qquad \therefore \quad [C = -10]$$

$$\therefore \quad F(x) = x^5 - \frac{1}{3}x^6 - 10$$

7/15

5/15

$$\int \left\{ \frac{1}{2} x^{2} + 3t^{2} + 4t + 9 \right\} dt$$

$$\int \left\{ t^{3} + 3t^{2} + 4t + 9 \right\} dt$$

$$= \int t^{3} dt + 3 \int t^{2} dt + 4 \int t^{2} dt + 9 \int t^{2} dt$$

$$= \int t^{3} dt + 3 \int t^{2} dt + 4 \int t^{2} dt + 9 \int t^{2} dt$$

$$= \int t^{3} dt + 3 \int t^{2} dt + 4 \int t^{2} dt + 9 \int t^{2} dt$$

$$= \int \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{3} t^{2} \right\} + 4 \left(\frac{1}{2} t^{3} \right) + 9 \cdot t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{3} t^{2} \right\} + 4 \left(\frac{1}{4} t^{3} \right) + 9 \cdot t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{3} t^{2} \right\} + 4 \left(\frac{1}{4} t^{3} \right) + 9 \cdot t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{3} t^{2} \right\} + 4 \left(\frac{1}{4} t^{3} \right) + 9 \cdot t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{3} t^{2} \right\} + 4 \left(\frac{1}{4} t^{3} \right) + 9 \cdot t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{3} t^{2} \right\} + 4 \left(\frac{1}{4} t^{3} \right) + 9 \cdot t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{3} t^{2} \right\} + 4 \left(\frac{1}{4} t^{3} \right) + 9 \cdot t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{3} t^{2} \right\} + 4 \left(\frac{1}{4} t^{3} \right) + 9 \cdot t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{4} t^{3} + 2 t^{2} + 9 t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{4} t^{3} + 2 t^{2} + 9 t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{4} t^{3} + 2 t^{2} + 9 t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{4} t^{3} + 2 t^{2} + 9 t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{4} t^{3} + 2 t^{2} + 9 t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{4} t^{3} + 2 t^{2} + 9 t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{4} t^{3} + 2 t^{2} + 9 t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{4} t^{3} + 2 t^{2} + 9 t + C$$

$$= \frac{1}{4} t^{4} + 3 \left\{ \frac{1}{4} t^{3} + 2 t^{2} + 9 t + C$$

$$= 10 \left\{ \frac{1}{2} t^{3} \right\} - \left\{ \frac{1}{4} t^{4} t^{4} + 3 t^{4} t$$

Image: Descent product of the symplex of the symp	$\int \frac{9 u^4 + 7 \sqrt{u}}{u^2} du$ then are no rules for the autiduivative of a guotient $= \int \left(\frac{9 u^4}{u^2} + \frac{7 \sqrt{u}}{u^2}\right) du = \int \left(9 u^2 + 7 u^2\right) du$ $= \int \left(9 u^2 + 7 u^{-3/2}\right) du = 9 \int u^2 du + 7 \int u^{-3/2} du$ $= 9 \left(\frac{1}{3} u^3\right) + 7 \left(\frac{1}{-\frac{3}{2}+1} u^{-3/2+1}\right) + C =$
10/15 http://www.ms.uky.edu/~ma137 Lectures 35 & 36	$= 3u^{3} + 7\left(\frac{1}{-\frac{1}{2}}u^{-\frac{1}{2}}\right) + C = 3u^{3} - 14\frac{1}{\sqrt{u}} + C$ $= \frac{3u^{3}\sqrt{u} - 14}{\sqrt{u}} + C$
Example 5: (Online Homework HW22, # 10) Find a function f such that $f'(x) = 4x^3$ and the line $x + y = 0$ is tangent to the graph of f .	$f'(x) = 4x^{3} \implies f'(x) = x^{4} + C$ We also know that "some where" this function is tangent to the line $y = -x$. i = 1 $i = 1$
11/15 http://www.ms.uky.edu/~ma137 Lectures 35 & 36	So $f'(x) = 4x^3 = -1 \iff x = -\sqrt[3]{\frac{1}{4}} \cong -0.62996$ what is the value of f at $x = -0.62996$? It must be the value of the tangent line at

that point! Hence $f(-0.62996) = 0.62996$ since the tangent line is $y = -x$. Hence $f(x) = x^4 + C$ is much that	AntiderivativesTheory ExamplesExample 6:(Online Homework HW22, # 13)Find f if $f'''(x) = sin(x)$, $f(0) = 8$, $f'(0) = 4$, and $f''(0) = -10$.
0.62996 = $(-0.62996)^4 + C$ $\therefore C = 0.47247$ Hence: $\int f(x) = x^4 + 0.47247$	
	12/15 http://www.ms.uky.edu/~ma137 Lectures 35 & 36
$f'''(x) = \sin x , f(o) = 8 , f'(o) = 4 , f''(o) = -i_0$ $\frac{Now}{2} : f'''(x) = \sin x \implies f''(x) = -\cos x + C_1$ $Since f''(o) = -i_0 we have -i_0 = -\frac{\cos(o)}{1} + C_1$ $\therefore C_1 = -i_0 + i = -9$ $So f''(x) = -\cos x - 9 , Thus$ $f'(x) = -\sin x - 9x + C_2$ $Since f'(o) = 4 we have 4 = f'(o) = -\frac{\sin(o)}{0} + C_2$ $\therefore C_2 = 4 , Heurce$ $f'(x) = -\sin x - 9x + 4$	we have that $f(x) = \cos x - \frac{9}{2}x^{2} + 4x + C_{3}$ Since $f(0) = 8$ we have $8 = f(0) = \cos(0) + C_{3}$ $\therefore C_{3} = 8 - 1 = 7$

Solving Simple Differential Equations

 $\frac{dy}{dx} = f(x)$

In this course, we have repeatedly encountered differential equations (\equiv DEs). Occasionally, we showed that a certain function would solve a given differential equation.

Antiderivatives

What we learned so far translates into solving DEs of the form

$$\frac{dy}{dx} = f(x).$$

Theory Examples

That is, the rate of change of y with respect to x depends only on x. We now know that if we can find one such function y such that y' = f(x), then there is a whole family of functions with this property, all related by vertical translations.

If we want to pick out one of these functions, we need to specify an initial condition — a point (x_0, y_0) on the graph of the function. Such a function is called a solution of the **initial-value problem**

with $y = y_0$ when $x = x_0$.

13/15

$$\frac{dy}{dx} = -2x^{2} + 3 \qquad (\implies y = -\frac{2}{3}x^{3} + 3x + c)$$
Now when $x_{0} = 3$ $y_{0} = 10$. So
$$10 = -\frac{2}{3}(3)^{3} + 3(3) + c$$

$$(\implies)$$

$$10 = -2 \cdot 9 + 9 + c$$

$$10 = -9 + c$$

$$\therefore c = 19$$

$$(11)$$

Example 7: (Neuhauser, Example 5, p. 298)

Antiderivatives

Solve the initial-value problem $\frac{dy}{dx} = -2x^2 + 3$ with $y_0 = 10$ when $x_0 = 3$.

Theory Examples

14/15 http://www.ms.uky.edu/~ma137 Lectures 35 & 36
Note that we could think of $\frac{dy}{dx} = -2x^2 + 3$ as
$dy = (-2x^2+3) dx$ Now take the indefinite integral of both sides
$\int 1 \cdot dy = \int (-2x^{2}+3) dx$ $y + C_{1} = -\frac{2}{3}x^{3}+3x + C_{2}$
hence $y = -\frac{2}{3}x^3 + 3x + (c_2 - c_1)$ C constant

