MA 137 — Calculus 1 with Life Science Applications **The Definite Integral** (Section 6.1)

Summations The Definite Integral

> Department of Mathematics University of Kentucky

http://www.ms.uky.edu/~ma137 Lecture 4

Summation Rules

The rules and formulas given next allow us to compute fairly easily Riemann sums where the number n of subintervals is rather large. We can also get compact and manageable expressions for the sum so that we can readily investigate what happens as n approaches infinity.

$$[sr_1] \qquad \sum_{k=1}^n c = n c \qquad [sr_2] \qquad \sum_{k=1}^n (c a_k) = c \sum_{k=1}^n a_k \\ [sr_3] \qquad \sum_{k=1}^n (a_k \pm b_k) = \sum_{k=1}^n a_k \pm \sum_{k=1}^n b_k$$

Note: The summations rules are nothing but the usual rules of arithmetic rewritten in the Σ notation.

For example, [sr₂] is nothing but the distributive law of arithmetic

$$\begin{array}{l} c \ a_1 + c \ a_2 + \dots + c \ a_n = c \ (a_1 + a_2 + \dots + a_n);\\ \textbf{[sr_3] is nothing but the commutative law of addition}\\ (a_1 \pm b_1) + \dots + (a_n \pm b_n) = (a_1 + \dots + a_n) \pm (b_1 + \dots + b_n).\\ \end{array}$$

Sigma (Σ) Notation

In approximating areas we have encountered sums with many terms. A convenient way of writing such sums uses the Greek letter Σ (which corresponds to our capital S) and is called *sigma notation*. More precisely, if a_1, a_2, \ldots, a_n are real numbers we denote the sum

$$a_1 + a_2 + \cdots + a_n$$

by using the notation

$$\sum^{n} a_{k}.$$

The integer k is called an *index* or *counter* and takes on the values 1, 2, ..., n. For example,

$$\sum_{k=1}^{6} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = 1 + 4 + 9 + 16 + 25 + 36 = 91$$

whereas

$$\sum_{k=3}^{6} k^2 = 3^2 + 4^2 + 5^2 + 6^2 = 9 + 16 + 25 + 36 = 86.$$

http://www.ms.uky.edu/~ma137 Lecture 40

Formulas [Neuhauser, Example #3 (p. 279); Problem # 31 (p. 291)]

$$[sf_1]$$
 $\sum_{k=1}^n k = \frac{n(n+1)}{2}$ $[sf_2]$ $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$

Proof: In the case of [sf₁], let S denote the sum of the integers 1, 2, 3, ..., n. Let us write this sum S twice: we first list the terms in the sum in increasing order whereas we list them in decreasing order the second time:

$$S = n + n - 1 + \dots + 1$$

If we now add the terms along the vertical columns, we obtain
$$2S = \underbrace{(n+1) + (n+1) + \dots + (n+1)}_{n + 1 + \dots + n} = n(n+1).$$

This gives our desired formula, once we divide both sides of the above equality by 2.

In the case of $[sf_2]$, let S denote the sum of the integers $1^2, 2^2, 3^2, \ldots, n^2$. The *trick* is to consider the sum

 $\sum_{k=1}^{n} [(k+1)^3 - k^3].$ On the one hand, this new sum collapses to

$$(2^{3}-1^{3}) + (3^{3}-2^{3}) + (4^{3}-3^{3}) + \dots + (n^{3}-(n-1)^{3}) + ((n+1)^{3}-n^{3}) = (n+1)^{3}-1^{3} = n^{3}+3n^{2}+3n$$

On the other hand, using our summation rules together with $\left[sf_{1}\right]$ gives us

$$\sum_{k=1}^{n} [(k+1)^{3} - k^{3}] = \sum_{k=1}^{n} [3k^{2} + 3k + 1] = 3\sum_{k=1}^{n} k^{2} + 3\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = 3S + 3\frac{n(n+1)}{2} + n$$

Equating the right hand sides of the above identities gives us: $3S + 3 \frac{n(n+1)}{2} + n = n^3 + 3n^2 + 3n$. If we solve for S and properly factor the terms, we obtain our desired expression.

http://www.ms.uky.edu/~ma137 Lecture 40

More Formulas

The next formulas can be verified in a sequential order using the same type of trick used in the proof for $[sf_2]$. The proofs get increasingly more tedious.

$$[sf_3] \qquad \sum_{k=1}^n k^3 = \frac{n^2(n+1)^2}{4}$$
$$[sf_4] \qquad \sum_{k=1}^n k^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

http://www.ms.uky.edu/~ma137

Example 1: (Online Homework, HW 23, #15)

Find the numerical value of the sums below:

•
$$\sum_{j=3}^{i} (4j-1)$$

• $\sum_{i=3}^{5} (i^2-i)$

5/1

 $\begin{array}{c} 7\\ \sum_{j=3}^{7} (4j-1) = \left[4 \cdot 3 - 1 \right] + \left[4 \cdot 4 - 1 \right] + \left[4 \cdot 5 - 1 \right] + \left[4 \cdot 6 - 1 \right] + \left[4 \cdot 7 - 1 \right] \\ = 11 + 15 + 19 + 23 + 27 = 95 \end{array}$

Lecture 40

$$\sum_{i=3}^{5} (i^{2} - i) = [3^{2} - 3] + [4^{2} - 4] + [5^{2} - 5]$$
$$= 6 + 12 + 20 = 38$$

Example 2:

Find the numerical value of the sums below:

http://www.ms.uky.edu/~ma137

Lecture 40

•
$$\sum_{j=3}^{n} (4j-1)$$

• $\sum_{i=3}^{n} (i^2-i)$

6/1

$$\sum_{j=3}^{n} (4_{j}-1) = \sum_{j=1}^{n} (4_{j}-1) - \sum_{j=1}^{2} (4_{j}-1)$$

$$= \sum_{j=1}^{n} (4_{j}-1) - \left[(4\cdot 1-1) + (4\cdot 2-1) \right]$$

$$= 4 \sum_{j=1}^{n} 3 - \sum_{j=1}^{n} 1 - 10$$

$$= 4 \sum_{j=1}^{n} 3 - \sum_{j=1}^{n} 1 - 10$$

$$= 4 \frac{n(n+1)}{2} - n - 10$$

$$= 2n(n+1) - n - 10$$

$$= 2n^{2} + 2n - n - 10$$

$$= 2n^{2} + 2n - n - 10$$

$$\sum_{i=3}^{n} (i^{2}-i) = \sum_{i=1}^{n} (i^{2}-i) - \sum_{i=1}^{2} (i^{2}-i)$$

$$= \sum_{i=1}^{n} (i^{2}-i) - \left[(1^{2}-1) + (2^{2}-2) \right]$$

$$= 0+2 = 2$$

$$= (\sum_{i=1}^{n} i^{2}) - (\sum_{i=1}^{n} i) - 2$$

$$= \frac{n}{6} - \frac{n(n+i)}{2} - 2$$
Simplify
$$= \frac{2n^{3}+3n^{2}+n}{6} - \frac{3n(n+i)}{2} - 12$$

$$= 2n^{3}+3n^{2}+n - 3n(n-i) - 12$$

$$= \frac{n^{3}-n-6}{6} = \frac{n^{3}-n-6}{3} = \frac{2n^{3}-2n-12}{6} = \frac{2n^{3}-2n-12}{6}$$

Back to the Area Problem: Partitions

The idea we have used so far is to "to partition" or subdivide the given interval [a, b] into smaller subintervals on each of which the variable x, and thus the function f(x), does not change much.

Definition of a Partition

A partition of an interval [a, b] is a set of points $\{x_0, x_1, x_2, \dots, x_{n-1}, x_n\}$, listed increasingly, on the x-axis with $a = x_0$ and $x_n = b$. That is: $a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$. These points subdivide the interval [a, b] into n subintervals $[a, x_1], [x_1, x_2], [x_2, x_3], \dots, [x_{n-1}, b]$. The k-th subinterval is thus of the form $[x_{k-1}, x_k]$ and it has length $\Delta x_k = x_k - x_{k-1}$.

Assumption

Set $||P|| = \max_{1 \le i \le n} \{\Delta x_i\}$. We assume that our partition P is such that $||P|| \to 0$ as $n \to \infty$. In other words, we assume that the length of the longest (and, hence, of all) subinterval(s) tend(s) to zero whenever the number of subintervals in P becomes very large.

The Definite Integral

and

8/1

- Let f(x) be a function defined on an interval [a, b].
 - Partition the interval [a, b] in *n* subintervals of lengths $\Delta x_1, \ldots, \Delta x_n$, respectively.
 - For k = 1, ..., n pick a representative point c_k in the corresponding k-th subinterval.

The definite integral of f from a to b is defined as

$$\lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \cdot \Delta x_k = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_k) \cdot \Delta x_k$$

it is denoted by
$$\int_{a}^{b} f(x) \, dx.$$

The sum $\sum_{k=1}^{n} f(c_k) \cdot \Delta x_k$ is called a *Riemann sum* in honor of the German mathematician Bernhard Riemann

(1826-1866), who developed the above ideas in full generality. The symbol \int is called the *integral sign*. It is an

and the standard in
elongated capital S, of the kind used in the 1600s and 1700s. The letter S stands for the summation performed in
elongated capital 5, of the kind used in the and have called the lower and upper limits of integration, respectively.
computing a Riemann sum. The numbers a and b are called the <i>lower and upper limits of integration</i> , respectively.
- c
The function $T(x)$ is called the most stage the limit as the size Δx of the subintervals gets closer and closer to C
The function $f(x)$ is called the <i>megranu</i> and the symbol of the state the subintervals gets closer and closer to C as representing what happens to the term Δx in the limit, as the size Δx of the subintervals gets closer and closer to C

Lecture 40

http://www.ms.uky.edu/~ma137

- The role of x in a definite integral is the one of a *dummy variable*. In fact $\int_{-\infty}^{\infty} x^2 dx$ and $\int_{-\infty}^{\infty} t^2 dt$ have the same meaning. They represent the same number.
- We recall that a limit does not necessarily exist. However:

Theorem

If f is continuous on [a, b] then $\int_{a}^{b} f(x) dx$ exists.

• As we observed earlier, it is computationally easier to partition the interval [a, b] into n subintervals of equal length. Therefore each subinterval has length $\Delta x = \frac{b-a}{n}$ (we drop the index k as it is no longer necessary). In this case, there is a simple formula for the points of the partition, namely:

 $x_0 = a + 0 \cdot \Delta x = a, \ x_1 = a + \Delta x, \ \dots \ x_k = a + k \cdot \Delta x, \ \dots, \ x_n = a + n \cdot \Delta x = b$ or, more concisely, $x_k = a + k \cdot \frac{b-a}{n}$ for $k = 0, 1, 2, \dots, n$.

10/1

http://www.ms.uky.edu/~ma137 Lecture 40

What if the Function Takes on Negative Values?

If f happens to take on both positive and negative values, then the Riemann sum is the sum of the areas of rectangles that lie above the x-axis and the negatives of the areas of rectangles that lie below the x-axis. Passing to the limit, we obtain that, in general, a definite integral can be interpreted as a difference of areas:

 $\int_{0}^{b} f(x) dx =$ [area of the region(s) lying above the x-axis] -[area of the region(s) lying below the x-axis]

Definite Integrals and Areas

We stress the fact that if the function ftakes on only positive values then the definite integral is nothing but the area of the region below the graph of f, lying above the x-axis, and bounded by the vertical lines x = a and x = b.

Distance traveled by an object:

If the positive valued function under consideration is the velocity v(t) of an object at time t, then the area underneath the graph of the velocity function and lying above the t-axis represents the total distance traveled by the object from t = a to t = b.

> http://www.ms.uky.edu/~ma137 Lecture 40

Right Versus Left Endpoint Estimates

Observe that x_k , the right endpoint of the k-th subinterval, is also the left endpoint of the (k + 1)-th subinterval. Thus the Riemann sum estimate for the definite integral of a function f defined over an interval [a, b] can be written in either of the following two forms

$$\sum_{k=0}^{n-1} f(x_k) \cdot \Delta x_{k+1} \qquad \qquad \sum_{k=1}^n f(x_k) \cdot \Delta x_k$$

depending on whether we use left or right endpoints, respectively.

Lecture 40

Riemann sum estimate

Example 3: (Online Homework, HW 23, # 11)

Express the limit as a definite integral

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \left(5 + \frac{2i}{n} \right)^{10}$$

From pape 13, the formula for a Riemann sum
using the night endpoints is:
$$f(a + k \cdot \frac{b-a}{n}) \cdot \frac{b-a}{n}$$

 $f(a + k \cdot \frac{b-a}{n}) \cdot \frac{b-a}{n}$

Hence in our can: live $\sum_{n \to \infty}^{m} \left(5 + \frac{2i}{n}\right)^{10} \cdot \frac{2}{n}$ says that this is $\int_{5}^{7} \frac{x^{10}}{f(x)} dx$

14/1

Example 4: (Online Homework, HW 23, # 12)

Express the limit as a definite integral

http://www.ms.uky.edu/~ma137

$$\lim_{n\to\infty} \sum_{i=1}^n \frac{4}{n} \sqrt{1+\frac{4}{n}}$$

Lecture 40

We can interpret line
$$\sum_{n \to \infty}^{m} \frac{4}{n} \sqrt{1 + \frac{4}{n}}i$$

as $\int \sqrt{1 + x} dx$ (this is the type of autoreal
fix) $\int \sqrt{1 + x} dx$ (this is the type of autoreal
that We BWork seeks)
or $\int \sqrt{x} dx$... which are actually
equivalent
there is just an horizontal shift !

-15/1

Example 5: (Online Homework, HW 23, # 7)

Evaluate the following integral by interpreting it in terms of areas:

$$\int_0^3 \left(\frac{1}{2}x - 1\right) dx$$

16/1

Example 6: (Online Homework, HW 23, # 10)

http://www.ms.uky.edu/~ma137

Let $g(x) = \int_0^x f(t) dt$, where f is the function whose graph is shown below.

		$ \Delta\rangle$	
	\downarrow		
\leftarrow	×-	6	->
Y	4		
		4	4 6

Lecture 40

- Evaluate g(x) for x = 0, 1, 2, 3, 4, 5, and 6.
- Estimate g(7).
- At what value of x does g attain its maximum?
- At what value of x does g attain its minimum?

