FastTrack — MA 137/MA 113 — BioCalculus Functions (3): The Algebra of Functions

Alberto Corso – (alberto.corso@uky.edu)

Department of Mathematics - University of Kentucky

Goal: We learn how two functions can be combined to form new functions. We then define one-to-one functions, which allows us to introduce the notion of inverse of a one-to-one function. These topics are of importance when we study exponential and logarithmic functions.

http://www.ms.uky.edu/~ma137 Lecture #3

Combining Function Composition of Functions

Combining functions

Let f and g be functions with domains A and B. We define new functions f + g, f - g, fg, and f/g as follows: (f + g)(x) = f(x) + g(x) Domain $A \cap B$ (f - g)(x) = f(x) - g(x) Domain $A \cap B$ (fg)(x) = f(x)g(x) Domain $A \cap B$ $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ Domain $\{x \in A \cap B \mid g(x) \neq 0\}$

Combining Function Composition of Functions

Note

Consider the above definition (f+g)(x) = f(x)+g(x).

The + on the left hand side stands for the operation of addition of functions.

The + on the right hand side, however, stands for addition of the numbers f(x) and g(x).

Similar remarks hold true for the other definitions.

Combining Function Composition of Functions

Example 1:

Let us consider the functions $f(x) = x^2 - 2x$ and g(x) = 3x - 1. rn e Find f + g, f - g, fg, and f/g and their domains. $(f+q)(x) = f(x)+g(x) = (x^2-2x)+(3x-1)$ $= x^{2} + x - 1$ $(f-g)(x) = f(x) - g(x) = (x^2 - 2x) - (3x)$ $= x^2 - 5x + 1$ $(fg)(x) = f(x) \cdot g(x) = (x^2 - 2x)$ 3x - 1) $x^{3} - 7x^{2} + 2x$

 $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{x^2 - 2x}{3x - 1}$ $\{x \in \mathbb{R} \mid x \neq 1_3\}$ domain :

Combining Function Composition of Functions

Example 2:

Let us consider the functions $f(x) = \sqrt{9 - x^2}$ and $g(x) = \sqrt{x^2 - 1}$. Find f + g, f - g, fg, and f/g and their domains. $(f+g)(x) = f(x) + g(x) = \sqrt{9-x^2} + \sqrt{x^2-1}$ domain: -3 -1 1 3 $(f-g)(x) = f(x) - g(x) = \sqrt{9-x^2} - \sqrt{x^2-1}$ 3

 $(fg)(x) = \sqrt{9-x^2} \cdot \sqrt{x^2-1} = \sqrt{(9-x^2)(x^2-1)}$ <u>++++ ;= == ; ++++</u>+ : domain: -3525-1 and IEzez $(f_{1}(x)) = \frac{f(x)}{g(x)} = \frac{\sqrt{9-x^{2}}}{\sqrt{x^{2}-1}} = \sqrt{\frac{9-z^{2}}{x^{2}-1}}$ domain: - 3

The graph of the function f + g can be obtained from the graphs of f and g by graphical addition.

This means that to obtain the value of f + g at any point x we add the corresponding values of f(x) and g(x), that is, the corresponding y-coordinates.

Similar statements can be made for the other operations on functions.

Combining Function Composition of Functions

Example 3:

Use graphical addition to sketch the graph of f + g.

graph of f + g

7/29

Combining Function Composition of Functions

Composition of Functions

Given any two functions f and g, we start with a number x in the domain of g and find its image g(x). If this number g(x) is in the domain of f, we can then calculate the value of f(g(x)).

The result is a new function h(x) = f(g(x)) obtained by substituting g into f. It is called the *composition* (or *composite*) of f and g and is denoted by $f \circ g$ (read: 'f composed with g' or 'f after g')

$$(f \circ g)(x) \stackrel{\mathsf{def}}{=} f(g(x)).$$

WARNING: $f \circ g \neq g \circ f$.

Combining Function Composition of Functions

Example 4:

Use f(x) = 3x - 5 and $g(x) = 2 - x^2$ to evaluate: g(f(0)) = 2 - |f(0)|f(g(0)) = 3 g(0)- 5 = 3 • 2 - 5 $= 2 - [-5]^2 = -$ -23 f(f(4)) = 3(f(4)) - 5 $= 3(3 \cdot 4 - 5) - 5 = 16$ $(g \circ g)(2) = 2 - [g(2)]$ = 2 - [- 2] = [$(f \circ g)(x) = \mathbf{f}(\mathbf{g}(\mathbf{x}))$ $(g \circ f)(x) = 2 - f$ (α) = 3q(x) --322

http://www.ms.uky.edu/~ma137 Lecture #3

Combining Function Composition of Functions

Example 5:

Let f and g be the functions considered in Example 3. Use the information provided by the graphs of f and g to find f(g(1)), g(f(0)), f(g(0)), and g(f(4)).

 $g(i)=0 \implies f(g(i))=2$ $f(o)=2 \implies g(f(o))=0.5$ $g(o) = -1 \implies f(g(o)) = 2.5$ q(f(4)) =(0) 9

Combining Function Composition of Functions

Example 6:

Let
$$f(x) = \frac{x}{x+1}$$
 and $g(x) = 2x - 1$.

× /

Find the functions $f \circ g$, $g \circ f$, and $f \circ f$ and their domains.

$$(f \circ g)(x) = f(g(x)) = \frac{g(x)}{g(x)+1} = \frac{2x-1}{(2x-1)+1} = \frac{2x-1}{2x}$$

$$(g \circ f)(z) = g(f(z)) = 2 f(z) - 1 = 2 \cdot \frac{z}{z+1} - 1$$

= $\frac{2z}{z+1} - 1 = \frac{2z - (z+1)}{z+1} = \frac{z-1}{z+1}$
domain: $z \neq -1$

 $\frac{f(z)}{f(z)+1}$ $(f \circ f)(x) = f(f(x)) =$

2/2+1 $\frac{\pi}{\pi+1}$ +1

2/2+1

 $\frac{2 + (2+1)}{2+1}$

x x+1 22+1 2. 22+1 2+1 domain: $x \neq -\frac{1}{2}$

 $\frac{\pi}{2\pi+1}$

Combining Function Composition of Functions

Example 7:

Express the function
$$F(x) = \frac{x^2}{x^2 + 4}$$
 in the form $F(x) = f(g(x))$.

$$z \mapsto z^2 \mapsto \frac{f}{z^2+4}$$

$$\frac{\text{thus}}{\text{thus}}: \quad g(x) = x^2$$

$$f(x) = \frac{x}{x+4}$$

Combining Function Composition of Functions

Example 8:

Find functions f and g so that $f \circ g = H$ if $H(x) = \sqrt[3]{2 + \sqrt{x}}$.

$$\chi \xrightarrow{g} 2 + \sqrt{z} \xrightarrow{f} \sqrt{2 + \sqrt{x}}$$

thus:
$$g(x) = 2 + \sqrt{x}$$

 $f(x) = \sqrt{x}$

Definition Horizontal Line Test

Definition of a One-One Function

A function f with domain A is called a **one-to-one function** if no two elements of A have the same image, that is, $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

An equivalent way of writing the above condition is: If $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Definition Horizontal Line Test

Horizontal Line Test

For functions that can be graphed in the coordinate plane, there is a useful criterion to determine whether a function is one-to-one or not.

Definition Horizontal Line Test

Example 9:

Show that the function f(x) = 5 - 2x is one-to-one.

http://www.ms.uky.edu/~ma137

Definition Horizontal Line Test

To make it

Lecture #3

it is not one-to-one as it

fails the horizontal lim

one-one

) (×)

1. nº Her

XC

18/29

f(x) with x > 2

Example 10:

Graph the function $f(x) = (x - 2)^2 - 3$. The function is not one-to-one: Why? Can you restrict its domain so that the resulting function is one-to-one? (There is more than one correct answer.)

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

The Inverse of a Function

One-to-one functions are precisely those for which one can define a (unique) **inverse function** according to the following definition.

Definition of the Inverse of a Function

Let f be a one-to-one function with domain A and range B. Its inverse function f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \quad \Longleftrightarrow \quad f(x) = y,$$

for any $y \in B$.

If f takes x to y, then f^{-1} takes y back to x. I.e., f^{-1} undoes what f does. **NOTE:** f^{-1} does NOT mean $\frac{1}{c}$.

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

20/29

Example 11:

Suppose f(x) is a one-to-one function. If f(2) = 7, f(3) = -1, f(5) = 18, $f^{-1}(2) = 6$ find: $f^{-1}(7) = 2$, f(6) = 2

$$f^{-1}(-1) = 3$$
 $f(f^{-1}(18)) = 18$

If
$$g(x) = 9 - 3x$$
, then $g^{-1}(3) = 2$
Support $9 - 3z = g(z) = 3$ then
 $-3z = -6$ \implies $z = 2$

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Properties of Inverse Functions

Let f(x) be a one-to-one function with domain A and range B. The inverse function $f^{-1}(x)$ satisfies the following "cancellation" properties:

$$f^{-1}(f(x)) = x$$
 for every $x \in A$

$$f(f^{-1}(x)) = x$$
 for every $x \in B$

Conversely, any function $f^{-1}(x)$ satisfying the above conditions is the inverse of f(x).

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Example 12:

Show that the functions $f(x) = x^5$ and $g(x) = x^{1/5}$ are inverses of each other.

$$f(g(z)) = [g(z)]^{5} = [z^{5}]^{5} = z$$

$$g(f(z)) = [f(z)]^{5} = [z^{5}]^{5} = z$$

http://www.ms.uky.edu/~ma137 Lecture #3

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Example 13:

Show that the functions
$$f(x) = \frac{1+3x}{5-2x}$$
 and $g(x) = \frac{5x-1}{2x+3}$ are inverses of each other.

we do one of the verifications :
$$f(g(z)) = z$$

 $f(g(z)) = \frac{1+3}{5} \frac{g(z)}{5-2g(z)} = \frac{1+3(\frac{5x-1}{2x+3})}{5-2(\frac{5x-1}{2x+3})} = \frac{1+3(\frac{5x-1}{2x+3})}{5-2(\frac{5x-1}{2x+3})} = \frac{1+3(\frac{5x-1}{2x+3})}{5-2(\frac{5x-1}{2x+3})} = \frac{1+3}{5(\frac{2x+3}{2x+3})} = \frac{1+3}{2x+3} = \frac{1+3}{2x+3} = \frac{1+3}{2x+3}$

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

How to find the Inverse of a One-to-One Function

- **1.** Write y = f(x).
- 2. Solve this equation for x in terms of y (if possible).
- **3.** Interchange x and y. The resulting equation is $y = f^{-1}(x)$.

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

 $x = \frac{1}{4}y + \frac{7}{4}$

25/29

Example 14:

Find the inverse of y = 4x - 7.

1)
$$y = 4x - 7$$

2) $4x = y + 7 \longrightarrow$
3) $\sqrt{y} = \frac{1}{4}x + \frac{7}{4}$

26/29

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Example 16:

Find the inverse of
$$y = \frac{2-x}{x+2}$$
.

$$f = \frac{2-x}{x+2}$$

$$2 \quad y(x+2) = 2-x \quad \longrightarrow \quad xy + z = 2-2y$$

$$\longrightarrow \quad x(y+1) = 2-2y \quad \longrightarrow \quad z = \frac{2-2y}{y+1}$$

3
$$y = \frac{2-2x}{x+1}$$

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Graph of the Inverse Function

The principle of interchanging x and y to find the inverse function also gives us a method for obtaining the graph of f^{-1} from the graph of f. The graph of f^{-1} is obtained by reflecting the graph of f in the line y = x.

The picture on the right hand side shows the graphs of:

$$f(x) = \sqrt{x+4}$$

and
$$f^{-1}(x) = x^2 - 4, \ x \ge 0$$

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Example 17:

Find the inverse of the function $f(x) = 1 + \sqrt{1 + x}$. Find the domain and range of f and f^{-1} . Graph f and f^{-1} on the same cartesian plane.

the domain of the inverse is: $\begin{bmatrix} z \ge 1 \end{bmatrix}$ tere nonge is: y 2-1 To get ten expusión of the inverse $\bigcirc y = 1 + \sqrt{1 + x}$ 2 $y-1 = \sqrt{1+x}$ $\longrightarrow (y-1)^2 = (\sqrt{1+x})^2$ \rightarrow $x = y^2 - 2y/$ $y^2 - 2y + 1 = 1 + x$ with $z \ge 1$ K $3 \left[y = x^2 - 2x \right]$