The Algebra of Functions One-One Functions The Inverse of a Function

The Algebra of Functions One-One Functions The Inverse of a Function

Combining Function Composition of Function

FastTrack — MA 137/MA 113 — BioCalculus			
Functions (3):			
The Algebra of Functions			

Alberto Corso –	(alberto.corso@uky.edu)
-----------------	-------------------------

Department of Mathematics - University of Kentucky

Goal: We learn how two functions can be combined to form new functions. We then define one-to-one functions, which allows us to introduce the notion of inverse of a one-to-one function. These topics are of importance when we study exponential and logarithmic functions.

Combining functions

Let f and g be functions with domains A and B . We define new functions $f + g$, $f - g$, fg , and f/g as follows:				
Domain $A \cap B$				
Domain $A \cap B$				
Domain $A \cap B$				
Domain $\{x \in A \cap B \mid g(x) \neq 0\}$				

1/29			2/29	
http://www.ms.uky.edu/~ma137	Lecture #3	http://www.ms.uky.edu/~ma137	Lecture #3	
The Algebra of Functions One-One Functions The Inverse of a Function	Combining Function Composition of Functions	The Algebra of Functions One-One Functions The Inverse of a Function	Combining Function Composition of Functions	
Note		Example 1:		
Consider the above definition $(f+g)(x) = f(x)+g(x)$.		Let us consider the functions $f(x) = x^2 - 2x$ and $g(x) = 3x - 1$.		
The $+\ {\rm on}$ the left hand side stands for the operation of addition of functions.		Find $f + g$, $f - g$, fg , and f/g and their domains.		
The + on the right hand side, however, stands for addition of the numbers $f(x)$ and $g(x)$.				

Similar remarks hold true for the other definitions.

The Algebra of Functions One: One Functions The Inverse of a Favoritation of Functions	The Algebra of Fun One-One Fun The Inverse of a Fur	tions Combining Function Composition of Functions
$x \longrightarrow g \longrightarrow g(x) \longrightarrow f \longrightarrow f(g(x))$ output	Example 4:	2 2
Machine diagram of $f \circ g$	Use $f(x) = 3x - 5$ and $g(x)$ f(g(0)) =	$= 2 - x^2$ to evaluate: g(f(0)) =
$f \circ g$		
	f(f(4)) =	$(g \circ g)(2) =$
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$(f \circ g)(x) =$	$(g \circ f)(x) =$
Arrow diagram of $f \circ g$		
9/29 http://www.ms.uky.edu/*ma137 Lecture #3	http://www.ms.uky.edu/"n	10/29 10/29
http://www.ms.uky.edu/ mais/	nttp://www.ms.uky.edu/ n	Lecture #5
The Neurol of Function The Neurol of Function	http://www.ms.uky.cdu/ m The Algebra of Fun One-One Fun The Inverse of a Fur	tions Combining Function
The Algebra of Functions One-One Functions	The Algebra of Fun One-One Fun	tions Combining Function
The Algebra of Function The base of Function Considering Function Example 5: Let f and g be the functions considered in Example 3. Use the	The Algebra of Funi One-One Fun The Inverse of a Fun	tions Combining Function clons Composition of Functions
The Algebra of Functions One-One Functions The Inverse of a Functions Example 5:	The Algebra of Functions The Migebra of Functional State of Function The Information of a Function Example 6: Let $f(x) = \frac{x}{x+1}$ and $g(x) = \frac{x}{x+1}$	tions Combining Function clons Composition of Functions
The Algebra of Function Due Due Function The Inverse of a Function Composition of Function Example 5: Example 3. Use the information provided by the graphs of f and g to find f(g(1)),	The Algebra of Functions The Migebra of Functional State of Function The Information of a Function Example 6: Let $f(x) = \frac{x}{x+1}$ and $g(x) = \frac{x}{x+1}$	close Composition of Function $=2x-1.$
The Algebra of Function The biology of a Function The biology of a Function Example 5: Let f and g be the functions considered in Example 3. Use the information provided by the graphs of f and g to find $f(g(1))$, g(f(0)), $f(g(0))$, and $g(f(4))$.	The Algebra of Functions The Migebra of Functional State of Function The Information of a Function Example 6: Let $f(x) = \frac{x}{x+1}$ and $g(x) = \frac{x}{x+1}$	close Composition of Function $=2x-1.$
The Algebra of Function Due Due Function The Inverse of a Function Composition of Function Example 5: Example 3. Use the information provided by the graphs of f and g to find f(g(1)),	The Algebra of Functions The Migebra of Functional State of Function The Information of a Function Example 6: Let $f(x) = \frac{x}{x+1}$ and $g(x) = \frac{x}{x+1}$	close Composition of Function $=2x-1.$
The Angleto of Function The bound of Function The bound of Function Example 5: Let f and g be the functions considered in Example 3. Use the information provided by the graphs of f and g to find $f(g(1))$, g(f(0)), f(g(0)), and $g(f(4))$.	The Algebra of Functions The Migebra of Functional State of Function The Information of a Function Example 6: Let $f(x) = \frac{x}{x+1}$ and $g(x) = \frac{x}{x+1}$	close Composition of Function $=2x-1.$
The Algebra of Function The biology of a Function The biology of a Function Example 5: Let f and g be the functions considered in Example 3. Use the information provided by the graphs of f and g to find $f(g(1))$, g(f(0)), $f(g(0))$, and $g(f(4))$.	The Algebra of Functions The Migebra of Functional State of Function The Information of a Function Example 6: Let $f(x) = \frac{x}{x+1}$ and $g(x) = \frac{x}{x+1}$	close Composition of Function $=2x-1.$
The Agreed of Learning Considered in Example 3. Use the information provided by the graphs of f and g to find $f(g(1))$, $g(f(0)), f(g(0))$, and $g(f(4))$.	The Algebra of Functions The Migebra of Functional State of Function The Information of a Function Example 6: Let $f(x) = \frac{x}{x+1}$ and $g(x) = \frac{x}{x+1}$	The composition of Function $Composition of Functions$ = $2x - 1$.

	The Algebra of Functions One-One Functions the Inverse of a Function	Definition Horizontal Line Test	The Algebra of Functions One-One Functions The Inverse of a Function	Definition Horizontal Line Test
Example 9:			Example 10:	
Show that the fu	nction $f(x) = 5$	– 2x is one-to-one.		2) ² – 3. The function is not ct its domain so that the resulting is more than one correct answer.)
http://w	ww.ms.uky.edu/~ma137	17/29 Lecture #3	http://www.ms.uky.edu/"ma137	18/29
٢	The Algebra of Functions One-One Functions he Inverse of a Function	Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function	The Algebra of Functions One-One Functions The Inverse of a Function	Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function
The Inverse of	f a Function		Example 11:	
(unique) inverse Definition of the Let <i>f</i> be a one-to inverse function	function accord Inverse of a Func- one function wi	th domain A and range B. Its B and range A and is defined by		
A	f = f(x)	If f takes x to y, then f^{-1} takes y back to x. I.e., f^{-1} undoes what f does. NOTE: f^{-1} does NOT mean $\frac{1}{f}$.	If $g(x) = 9 - 3x$, then $g^{-1}(3) =$	20/23
https://w	ww.ms.uky.edu/~ma137	Lecture #3	http://www.ms.uky.edu/"ma137	Lecture #3

The Algebra of Functions One-One Functions The Inverse of a Function The Inverse of a Function

Example 17:

Find the inverse of the function $f(x) = 1 + \sqrt{1 + x}$. Find the domain and range of f and f^{-1} . Graph f and f^{-1} on the same cartesian plane.

29/2

http://www.ms.uky.edu/~ma137 Lecture #3