The Algebra of Functions One-One Functions The Inverse of a Function

FastTrack — MA 137/MA 113 — BioCalculus Functions (3): The Algebra of Functions

Alberto Corso – (alberto.corso@uky.edu)

Department of Mathematics - University of Kentucky

Goal: We learn how two functions can be combined to form new functions. We then define one-to-one functions, which allows us to introduce the notion of inverse of a one-to-one function. These topics are of importance when we study exponential and logarithmic functions.

> http://www.ms.uky.edu/~ma137 Lecture #3

The Algebra of Functions One-One Functions The Inverse of a Function

Combining Function Composition of Functions

Note

Consider the above definition (f+g)(x) = f(x)+g(x).

The + on the left hand side stands for the operation of addition of functions.

The + on the right hand side, however, stands for addition of the numbers f(x) and g(x).

Similar remarks hold true for the other definitions.

The Algebra of Functions One-One Functions The Inverse of a Function

Combining Function Composition of Functions

Combining functions

Let f and g be functions with domains A and B. We define new functions f + g, f - g, fg, and f/g as follows:

(f+g)(x) = f(x) + g(x)Domain $A \cap B$

(f-g)(x) = f(x) - g(x)Domain $A \cap B$

(fg)(x) = f(x)g(x)

 $\left(\frac{f}{\sigma}\right)(x) = \frac{f(x)}{\sigma(x)}$

Domain $A \cap B$

http://www.ms.uky.edu/~ma137 Lecture #3

One-One Functions

The Inverse of a Function

The Algebra of Functions

Combining Function

Composition of Functions

3/29

Example 1: Let us consider the functions $f(x) = x^2 - 2x$ and g(x) = 3x - 1. red num Find f + g, f - g, fg, and f/g and their domains. $(f+q)(x) = f(x)+g(x) = (x^2-2x)+(3x-1)$ = x^2+x-1 $(f-g)(x) = f(x) - g(x) = (x^2 - 2x) - (3x - 1)$

$$fg)(x) = f(x) \cdot g(x) = (x^{2} - 2x)(3x - 1)$$

$$= 3x^{3} - 7x^{2} + 2x$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{x^2 - 2x}{3x - 1}$$

domain : $\left\{x \in \mathbb{R} \mid x \neq \frac{1}{3}\right\}$

√ 2²-1

3

 $g^{(z)} g^{(z)} \sqrt{z^{2}-1}$

Ite Algebra of Functions
The Inverse of a Functions
Example 2:
Let us consider the functions
$$f(x) = \sqrt{9 - x^2}$$
 and $g(x) = \sqrt{x^2 - 1}$.
Find $f + g$, $f - g$, fg , and f/g and their domains.
 $(f + g)(x) = f(x) + g(x) = \sqrt{9 - x^2} + \sqrt{x^2 - 1}$
domain : $(f - g)(x) = f(x) - g(x) = \sqrt{9 - x^2} - \sqrt{x^2 - 1}$
 $domain : \dots -3 - 1 \qquad 1 \qquad 3$
 $(f - g)(x) = f(x) - g(x) = \sqrt{9 - x^2} - \sqrt{x^2 - 1}$
domain : $(f - g)(x) = f(x) - g(x) = \sqrt{9 - x^2} - \sqrt{x^2 - 1}$

The Algebra of Functions One-One Functions The Inverse of a Function

The graph of the function f + g can be obtained from the graphs of f and g by graphical addition.

This means that to obtain the value of f + g at any point x we add the corresponding values of f(x) and g(x), that is, the corresponding y-coordinates.

Similar statements can be made for the other operations on functions.

Use graphical addition to sketch the graph of f + g.

Composition of Functions

Given any two functions f and g, we start with a number x in the domain of g and find its image g(x). If this number g(x) is in the domain of f, we can then calculate the value of f(g(x)).

The result is a new function h(x) = f(g(x)) obtained by substituting g into f. It is called the *composition* (or *composite*) of f and g and is denoted by $f \circ g$ (read: 'f composed with g' or 'f after g')

 $(f \circ g)(x) \stackrel{\text{def}}{=} f(g(x)).$

WARNING: $f \circ g \neq g \circ f$.

Lecture #3 http://www.ms.uky.edu/~ma137

The Algebra of Functions **One-One Functions** The Inverse of a Function Definition **Properties of Inverse Functions** How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Example 12:

Show that the functions $f(x) = x^5$ and $g(x) = x^{1/5}$ are inverses of each other.

$$f(g(x)) = [g(x)]^{5} = [x^{45}]^{5} = x$$
$$g(f(x)) = [f(x)]^{45} = [x^{5}]^{45} = x$$

Definition **Properties of Inverse Functions** How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Example 13:

Show that the functions $f(x) = \frac{1+3x}{5-2x}$ and $g(x) = \frac{5x-1}{2x+3}$ are inverses of each other. we do one of the verifications : f(g(z)) = z $f(g(x)) = \frac{1+3g(x)}{5-2g(x)} = \frac{1+3\left(\frac{5x-1}{2x+3}\right)}{5-2\left(\frac{5x-1}{2x+3}\right)}$ (2x+3)+3(5x-1)5(2x+3) - 2(5x-1)23/29

> http://www.ms.uky.edu/~ma137 Lecture #3

> > The Algebra of Functions

Definition The Algebra of Functions **One-One Functions** The Inverse of a Function

http://www.ms.uky.edu/~ma137

Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

How to find the Inverse of a One-to-One Function

Lecture #3

- 1. Write y = f(x).
- **2.** Solve this equation for x in terms of y (if possible).
- **3.** Interchange x and y. The resulting equation is $y = f^{-1}(x)$.

Example 14:

Properties of Inverse Functions One-One Functions How to find the Inverse of a One-to-One Function The Inverse of a Function Graph of the Inverse Function

Definition

Find the inverse of y = 4x - 7.

1)
$$y = 4x - 7$$

2) $4x = y + 7 \longrightarrow x = \frac{1}{4}y + \frac{7}{4}$
3) $\sqrt{y} = \frac{1}{4}x + \frac{7}{4}$

22/29

the domain of the inverse is:
$$z \ge 1$$

the nonge is: $y \ge -1$
To get the expression of the inverse
() $y = 1 + \sqrt{1 + x}$
(2) $y - 1 = \sqrt{1 + x}$ ($y - 1$)² = ($\sqrt{1 + x}$)²
 $y^2 - 2y + 1 = 1 + x$ \longrightarrow $x = y^2 - 2y$
(3) $y = x^2 - 2x$ with $x \ge 1$ K