Exponential Functions Logarithmic Functions Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function Compound Interest

			Exponential Functions	
	137/MA 113 — BioCalculus Functions (4): and Logarithmic Functions		The exponential function $f(x) = a^x$ $(a > 0, a \neq 1)$ has domain \mathbb{R} and range $(0, \infty)$. The graph of $f(x)$ has one of these shapes: v_A	
Alberto Corso - (alberto.corso@uky.edu) Department of Mathematics - University of Kentucky Goal: We introduce two new classes of functions called exponential and logarithmic functions. They are inverses of each other. Exponential functions are appropriate for modeling such natural processes as population growth for all living things and radioactive decay.		$f(x) = a^{x} \text{ for } a > 1$ $f(x) = a^{x} = 1$ $f(x) = a^{x} = 1$	2/34	
http://www.ms.uky.edu	Definition and Graph of Exponential Functions		http://www.ms.uky.edu/*ma137 Lecture #4 Definition and Graph of Exponential Functions	
Exponential Logarithmic	Functions The number 'e' Functions The Natural Exponential Function Compound Interest		Exponential Functions The number 'e' Logarithmic Functions The Natural Exponential Function Compound Interest	
Example 1:			Example 2:	
Let $f(x) = 2^x$. Evaluate t	he following:		Draw the graph of each function:	
f(2) =	f(-1/3) =		$f(x) = 2^{x} \qquad \qquad g(x) = \left(\frac{1}{2}\right)^{x}$	
$f(\pi) =$	$f(-\sqrt{3}) =$			
http://www.ms.uky.edu	a/"ma137 Lecture #4	3/34	4. http://www.mis.uky.edu/*ma137 Lecture #4	1/34

Exponential Functions The number for the Leponential Functions Congustibution Exponential Functions Compared Interast
The Number 'e'
The most important base is the number denoted by the letter e. The number e is defined as the value that $(1+1/n)^n$ approaches as <i>n</i> becomes very large. Correct to five decimal places (note that e is an irrational number), $e \approx 2.71828$. 1 2.00000 5 2.48832 10 2.59374 100 2.70481 1.0000 2.71692 100,000 2.71815 100,000 2.71825
6/3 http://www.ms.uky.edu/"ma137 Lecture #4
Exponential Function Legistitume Functions The Natural Exponential Function The Natural Exponential Function
When a certain drug is administered to a patient, the number of milligrams remaining in the patient's bloodstream after 1 hours is modeled by $D(t) = 50 \ e^{-0.2t}.$ How many milligrams of the drug remain in the patient's bloodstream after 3 hours?

Exponential Functions Logarithmic Functions Definition and Graph of Exponential Funct The number 'e' The Natural Exponential Function Compound Interest

Compound Interest

Compound interest is calculated by the formula:

$$P(t) = P_0 \left(1 + \frac{r}{n}\right)^{nt}$$

where

P(t) = principal after t years

P₀ = initial principal

- r = interest rate per year
- n = number of times interest is compounded per year

t = number of years

Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function Compound Interest

Continuously Compounded Interest

Continuously compounded interest is calculated by the formula:

 $P(t) = P_0 e^{rt}$

where

P(t) =principal after t years $P_0 =$ initial principal t =number of years t =number of years

Proof: The interest paid increases as the number *n* of compounding periods increases. If $m = \frac{n}{2}$, then:

$$P\left(1+\frac{r}{n}\right)^{nt} = P\left[\left(1+\frac{r}{n}\right)^{n/r}\right]^{rt} = P\left[\left(1+\frac{1}{m}\right)^{m}\right]^{rt}.$$

But as *m* becomes large, the quantity $(1 + 1/m)^m$ approaches the number *e*. Thus, we obtain the formula for the continuously compounded interest.

http://www.ms.uky.edu/~ma137	Lecture #4	http://www.ms.uky.edu/~ma137 Lecture #4
Exponential Functions Logarithmic Functions	Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function Compound Interest	Exponential Functions Definition and Graph of Exponential Functions The manker year of the Statust Exponential Function Compound Intervet
Example 5:		Example 6:
Suppose you invest \$2,000 at an annual rate of 12% ($r = 0.12$) compounded quarterly ($n = 4$). How much money would you have one year later? What if the investment was compounded monthly ($n = 12$)?		Suppose you invest \$2,000 at an annual rate of 9% ($r = 0.09$) compounded continuously. How much money would you have after three years?

Ergonential Function Graphs of Gugarithmic Functions Logarithmic Functions Base Charge	Exponential Functions Graphs of sequations: Functions Logarithmic Functions Base Charge
Logarithmic Functions	Example 7:
Every exponential function $f(x) = a^x$, with $0 < a \neq 1$, is a one-to-one function (Horizontal Line Test). Thus, it has an inverse function, called the <i>logarithmic function with base a</i> and denoted by $\log_a x$.	Change each exponential expression into an equivalent expression in logarithmic form: $\mathbf{5^3} = \mathbf{b}$
Definition Let <i>a</i> be a positive number with $a \neq 1$. The logarithmic function with base <i>a</i> , denoted by log _{<i>a</i>} , is defined by $y = \log_a x \iff a^y = x$.	$a^{6} = 15$
In other words, $\log_a x$ is the exponent to which a must be raised to give x.	
Properties of Logarithms 1. $\log_a 1 = 0$ 3. $\log_a a^x = x$ 2. $\log_a a = 1$ 4. $a^{\log_a x} = x$	$e^{t+1} = 0.5$
13/34 http://www.ms.uky.edu/*ms137 Lecture #4	14/34 http://www.ms.uky.edu/*ma137 Lecture #4
Exponential Functions Logarithmic Functions Logarithmic Functions Law of Logarithmis Base Change	Exponential Functions Logarithmic Functions Logarithmic Functions Law of Logarithmis Base Change
Example 8:	Graphs of Logarithmic Functions
Change each logarithmic expression into an equivalent expression in exponential form: $\log_3 81 = 4$	The graph of $f^{-1}(x) = \log_3 x$ is obtained by reflecting the graph of $f(x) = a^x$ in the line $y = x$. Thus, the function $y = \log_3 x$ is defined for $x > 0$ and has range equal to \mathbb{R} . $y = 2^x$ $y = x$
$\log_8 4 = \frac{2}{3}$	$y = \log_2 x$
$\log_e(x-3)=2$	The point (1,0) is on the graph of $y = \log_3 x$ (as $\log_3 1 = 0$) and
15/34	The point $(1,0)$ is on the graph of $y = \log_a x$ (as $\log_a 1 = 0$) and the y-axis is a vertical asymptote.
http://www.ms.uky.edu/~ma137 Lecture #4	http://www.ms.uky.edu/"ma137 Lecture #4

Exponential Functions Logarithmic Functions	Definition Graphs of Logarithmic Functions Common and Natural Logarithms Laws of Logarithms Base Change	Exponential Functions Logarithmic Functions	Definition Graphs of Logarithmic Functions Common and Natural Logarithms Laws of Logarithms Base Change
Example 9:		Common Logarithms	
Find the domain of the function sketch its graph.	$f(x) = \log_3(x+2)$ and	The logarithm with base 10 is call is denoted by omitting the base: Example 10 (Bacteria A certain strain of bacteria divide started with 50 bacteria, then the colony to grow to <i>N</i> bacteria is g $t = 3 \frac{\log 2}{2}$ Find the time required for the colo	$\label{eq:constraint} \begin{array}{ c c c c c } \hline log x := log_{10} x. \\ \hline \hline \textbf{Colony):} \\ \hline s every three hours. If a colony is time t (in hours) required for the iven by \\ \hline s(M/50) \\ \hline log 2. \\ \hline \end{array}$
http://www.ms.uky.edu/~ma137	17/34 Lecture #4	http://www.ms.uky.edu/~ma137	18/34 Lecture #4
Exponential Functions Logarithmic Functions	Definition Graphs of Logarithmic Functions Common and Natural Logarithms Laws of Logarithms Base Change	Exponential Functions Logarithmic Functions	Definition Graphs of Logarithmic Functions Common and Natural Logarithms Laws of Logarithms Base Change
Natural Logarithms		Example 11:	
Of all possible bases a for logarithms, it turns out that the most convenient choice for the purposes of Calculus is the number e. Definition		Evaluate each of the following exp In e ⁹	pressions:
The logarithm with base e is called the natural logarithm and denoted: $\boxed{\ln x := \log_{e} x}$. We recall again that, by the definition of inverse functions, we have		$\ln rac{1}{e^4}$	
$y = \ln x \iff e^y = x.$		e ^{ln 2}	
Properties of Natural Logarithms		e	
1. $\ln 1 = 0$ 2. $\ln e = 1$	3. $\ln e^x = x$ 4. $e^{\ln x} = x$		
 In e = 1 http://www.ms.uky.edu/~ma137 	4. e ^{m x} = x 19/34	http://www.ms.uky.edu/"ma137	20/34 Lecture #4

Exponential Functions Logarithmic Functions Logarithmic Functions Base Change	Exponential Functions Legarithmic Functions Legarithmic Functions
Example 12:	Example 13:
Graph the function $y = 2 + \ln(x - 3)$.	Find the domain of the function $f(x) = 2 + \ln(10 + 3x - x^2)$.
	21/34 22/34
http://www.ms.uky.edu/"ma137 Lecture #4	21/34 http://www.ms.uky.edu/*ma137 Lecture #4
Exponential Functions Logarithmic Functions Logarithmic Functions Logarithmic Basic Change	Esponential Functions Legarithmic Functions Legarithmic Functions Legarithmic Functions
Laws of Logarithms	Proof of Law 1.: $\log_a(AB) = \log_a A + \log_a B$
Since logarithms are 'exponents', the Laws of Exponents give rise to the Laws of Logarithms: Laws of Logarithms Let <i>a</i> be a positive number, with $a \neq 1$. Let <i>A</i> , <i>B</i> and <i>C</i> be any real numbers with $A > 0$ and $B > 0$. 1. $\log_a(AB) = \log_a A + \log_a B$; 2. $\log_a\left(\frac{A}{B}\right) = \log_a A - \log_a B$; 3. $\log_a(A^C) = C \log_a A$.	$\log_{g} A = u \text{and} \log_{g} B = v.$ When written in exponential form, they become

Exponential Functions Graphs of Gegarithmic Functions Cognitimic Functions Common and Matural Legarithms Base Change Man	Exponential Functions Graphs of Gegarithmic Functions Common and Paramal Legarithmic Base Change Home
Example 14:	Expanding and Combining Logarithmic Expressions
Evaluate each expression: $\log_5 5^9 \qquad \log_3 7 + \log_3 2 \qquad \log_3 16 - 2\log_3 2$	Example 15: Use the Laws of Logarithms to expand each expression: $\log_2(2x)$
$\ln\left(\ln e^{(e^{200})}\right)$ $\log_3 100 - \log_3 18 - \log_3 50$	$\log_5(x^2(4-5x))$
http://www.ms.ukyadu/"ma337 Lecture #4	$\log\left(x\sqrt{\frac{y}{z}}\right)$ http://www.mit.dy.tdu/~mil.17 Letters #4
Exponential Function Logarithmic Function Logarithmic Function Base Charge	Exponential Functions Legathmic Functions Legathmic Functions Base Charge 8
Example 16:	Example 17:
Use the Laws of Logarithms to combine the expression $\log_a b + c \log_a d - r \log_a s$ into a single logarithm.	Use the Laws of Logarithms to combine the expression $\ln 5 + \ln(x+1) + \frac{1}{2}\ln(2-5x) - 3\ln(x-4) - \ln x$ into a single logarithm.
http://www.ms.uky.edu/*ms137 Lecture #4	http://www.ms.uky.edu/*ma137 Lecture #4 28/34

Exponential Functions Logarithmic Functions Graphs of Logarithmic Functions Common and Natural Logarithm Laws of Logarithms Base Change

Example 18 (Forgetting):

Ebbinghaus's Law of Forgetting states that if a task is learned at a performance level P_0 , then after a time interval t the performance level P satisfies

$$\log P = \log P_0 - c \log(t+1),$$

where c is a constant that depends on the type of task and t is measured in months.

- (a) Solve the equation for P.
- (b) Use Ebbinghaus's Law of Forgetting to estimate a student's score on a biology test two years after he got a score of 80 on a test covering the same material. Assume c = 0.3.

http://www.ms.uky.edu/~ma137 Lecture #4

Definition Graphs of Logarithmic Functions Common and Natural Logarithms Laws of Logarithms Base Change

http://www.ms.uky.edu/~ma137

Lecture #4

29/34	30/34
http://www.ms.uky.edu/~ma137 Lecture #4	http://www.ms.uky.edu/~ma137 Lecture #4
Exponential Functions Graph of Logarithmic Functions Logarithmic Functions Base Charge 5	Exponential Functions Graph of Logarithmic Functions Logarithmic Functions Base Charge 5
Comment (cont.d)	Example 19 (Biodiversity):
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	 Some biologists model the number of species S in a fixed area A (such as an island) by the Species-Area relationship log S = log c + k log A, Where c and k are positive constants that depend on the type of species and habitat. (a) Solve the equation for S. (b) Use part (a) to show that if k = 3 then doubling the area increases the number of species eightfold.

Exponential Function Graph of Gapartimic Functions Logarithmic Functions Base Change Base Change	Exponential Functions Graphs of Gaparthenic Functions Logarithmic Functions Base Charge Base Charge
Change of Base	Example 20:
For some purposes, we find it useful to change from logarithms in one base to logarithms in another base. One can prove that: $\boxed{\log_b x = \frac{\log_3 x}{\log_a b}}.$	Use the Change of Base Formula and common or natural logarithms to evaluate each logarithm, correct up to five decimal places: log ₅ 2
Proof: Set $y = \log_b x$. By definition, this means that $b^y = x$. Apply now $\log_g(\cdot)$ to $b^y = x$. We obtain $\log_g(b^y) = \log_g x \rightsquigarrow y \log_g b = \log_g x$.	log ₄ 125
Thus $\log_b x = y = \frac{\log_a x}{\log_a b}.$	$\log_{\sqrt{3}} 5$
http://www.ms.uky.edu/"ms137 Lecture #4	34/34 http://www.ms.uky.edu/~ms137 Lecture #4