FastTrack — MA 137/MA 113 — BioCalculus Functions (4): Exponential and Logarithmic Functions

Alberto Corso – (alberto.corso@uky.edu)

Department of Mathematics - University of Kentucky

Goal: We introduce two new classes of functions called *exponential and logarithmic functions*. They are inverses of each other. Exponential functions are appropriate for modeling such natural processes as population growth for all living things and radioactive decay.

Lecture #4

Exponential Functions

Exponential Functions

Logarithmic Functions

The **exponential function** $f(x) = a^{x} \quad (a > 0, a \neq 1)$ has domain \mathbb{R} and range $(0, \infty)$. The graph of f(x) has one of these shapes: $y = \int_{0}^{1} \int_{0}^$

Definition and Graph of Exponential Functions

Definition and Graph of Exponential Functions

The Natural Exponential Function

The number 'e'

Compound Interest

The Natural Exponential Function

The number 'e'

Compound Interest

Exponential Functions Logarithmic Functions Compound Interest

http://www.ms.uky.edu/~ma137

Example 1:

Let $f(x) = 2^{x}$. Evaluate the following: $f(2) = 2^{2} = 4$ $f(-1/3) = 2^{-\frac{1}{3}} = \frac{1}{2^{\frac{1}{3}}} = \frac{1}{3\sqrt{2}}$ $\cong 0.793$ $f(\pi) = 2^{\frac{\pi}{2}} \cong 2.825$ $f(-\sqrt{3}) = 2^{-\sqrt{3}} = \frac{1}{2^{\sqrt{3}}}$ $\cong 0.301$

Draw the graph of each function:

Example 2:

3/34

Exponential Functions

Logarithmic Functions

Exponential Functions Logarithmic Functions Compound Interest

Example 3:

Exponential Functions Logarithmic Functions Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function Compound Interest

The Number 'e'

The most important base is the number denoted by the letter e.

The number e is defined as the value that $(1+1/n)^n$ approaches as n becomes very large.

Correct to five decimal places (note that e is an irrational number), $e \approx 2.71828$.

п	$\left(1+\frac{1}{n}\right)^n$
1	2.00000
5	2.48832
10	2.59374
100	2.70481
1,000	2.71692
10,000	2.71815
100,000	2.71827
1,000,000	2.71828

http://www.ms.uky.edu/~ma137 Lecture a

Exponential Functions

Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function Compound Interest

Example 4:

*x*_{7/34}

When a certain drug is administered to a patient, the number of milligrams remaining in the patient's bloodstream after t hours is modeled by

$$D(t) = 50 e^{-0.2t}$$

How many milligrams of the drug remain in the patient's bloodstream after 3 hours?

$$D(3) = 50 e = 50 e \approx 27.44 m_{\odot}$$

http://www.ms.uky.edu/~ma137 Lecture #4

Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function **Compound Interest**

Compound Interest

Compound interest is calculated by the formula:

 $P(t) = P_0 \left(1 + \frac{r}{n}\right)^{nt}$

where

P(t) = principal after t years

= initial principal P_0

- = interest rate per year r
- = number of times interest is compounded per year п
- = number of years t

Exponential Functions Logarithmic Functions

http://www.ms.uky.edu/~ma137

Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function Compound Interest

Lecture #4

Example 5:

Suppose you invest \$2,000 at an annual rate of 12% (r = 0.12) compounded quarterly (n = 4). How much money would you have one year later? What if the investment was compounded monthly

$$(n = 12)?$$

$$A(t) = 2,000 \left(1 + \frac{0.12}{4}\right)^{4t} = 2,000 \left(1.03\right)^{4t}$$

$$So: A(1) = 2,000 \left(1.03\right)^{4} \cong \ \frac{2,251.02}{2,251.02}$$

$$A(t) = 2,000 \left(1 + \frac{0.12}{12}\right)^{12t} = 2,000 \left(1.01\right)^{12t}$$

$$So: A(1) = 2,000 \left(1.01\right)^{12} \cong \ 2,253.6$$

Definition and Graph of Exponential Functions **Exponential Functions** The number 'e' Logarithmic Functions

The Natural Exponential Function **Compound Interest**

Continuously Compounded Interest

Continuously compounded interest is calculated by the formula:

$$P(t) = P_0 e^{rt}$$

where

P(t) = principal after t years	$P_0 = initial principal$
r = interest rate per year	t = number of years

Proof: The interest paid increases as the number *n* of compounding periods increases. If $m = \frac{n}{2}$, then:

$$P\left(1+\frac{r}{n}\right)^{nt} = P\left[\left(1+\frac{r}{n}\right)^{n/r}\right]^{rt} = P\left[\left(1+\frac{1}{m}\right)^{m}\right]^{rt}.$$

But as m becomes large, the quantity $(1 + 1/m)^m$ approaches the number e. Thus, we obtain the formula for the continuously compounded interest.

> http://www.ms.uky.edu/~ma137 Lecture #4

> > **Exponential Functions** Logarithmic Functions

Definition and Graph of Exponential Functions The number 'e' The Natural Exponential Function **Compound Interest**

Example 6:

9/34

Suppose you invest \$2,000 at an annual rate of 9% (r = 0.09) compounded continuously. How much money would you have after three years?

$$A(t) = 2,000 e^{0.09t}$$

$$Solve = 2,000 e^{0.09t}$$

$$= 2,000 e^{0.27}$$

$$= 2,000 e^{0.27}$$

$$\cong $2,619.93$$

10/34

Definition **Graphs of Logarithmic Functions Common and Natural Logarithms** Laws of Logarithms Base Change

X

Logarithmic Functions

Every exponential function $f(x) = a^x$, with $0 < a \neq 1$, is a one-to-one function (Horizontal Line Test). Thus, it has an inverse function, called the *logarithmic function with base a* and denoted by $log_a x$.

Definition

Let a be a positive number with $a \neq 1$. The logarithmic function with base a, denoted by \log_a , is defined by

$$y = \log_a x \iff a^y = x$$

In other words, $\log_a x$ is the exponent to which a must be raised to give x.

Properties of Logarithms

1.	$\log_a 1 = 0$	3. $\log_a a^x =$
2.	$\log_a a = 1$	$4. a^{\log_a x} = x$

http://www.ms.uky.edu/~ma137 Lecture #4

Exponential Functions Logarithmic Functions

Definition Graphs of Logarithmic Functions **Common and Natural Logarithms** Laws of Logarithms **Base Change**

13/34

15/34

Example 8:

Change each logarithmic expression into an equivalent expression in exponential form: 1.

$$\log_3 81 = 4 \quad \longleftrightarrow \quad \mathbf{3}^{\mathsf{q}} = \mathbf{8}$$

$$\log_8 4 = \frac{2}{3} \qquad \longleftrightarrow \qquad 8^{2/3} = 4$$

$$\log_e(x-3) = 2 \quad \longleftarrow \quad e^2 = x-3$$

Change each exponential expression into an equivalent expression in logarithmic form:

Exponential Functions Logarithmic Functions

 $5^3 = b$

$$\log_5 (b) = 3$$

Definition

Base Change

Laws of Logarithms

Graphs of Logarithmic Functions

Common and Natural Logarithms

$$\ell_{og}(15) = 6$$

$$e^{t+1} = 0.5$$

$$log_e(0.5) = t + 1$$

http://www.ms.uky.edu/~ma137 Lecture #4

14/34

Graphs of Logarithmic Functions Exponential Functions **Common and Natural Logarithms** Logarithmic Functions Laws of Logarithms **Base Change**

Definition

Graphs of Logarithmic Functions

Definition Graphs of Logarithmic Functions Common and Natural Logarithms Laws of Logarithms Base Change

Example 9:

IN

+

Find the domain of the function $f(x) = \log_3(x+2)$ and sketch its graph.

$$here N = 1,000,000$$

$$= 3 \frac{\log \left(\frac{1,000,000}{50}\right)}{\log 2}$$
$$= 3 \frac{\log (2000)}{\log (2)} \cong 42.86$$
hows

Exponential Functions Logarithmic Functions

Graphs of Logarithmic Functions Common and Natural Logarithms Laws of Logarithms Base Change

Common Logarithms

The logarithm with base 10 is called the **common logarithm** and is denoted by omitting the base: $\log x := \log_{10} x$.

Example 10 (Bacteria Colony):

http://www.ms.uky.edu/~ma137

A certain strain of bacteria divides every three hours. If a colony is started with 50 bacteria, then the time t (in hours) required for the colony to grow to N bacteria is given by

$$t = 3 \, \frac{\log(N/50)}{\log 2}$$

Find the time required for the colony to grow to a million bacteria.

Exponential Functions Logarithmic Functions

Graphs of Logarithmic Functions Common and Natural Logarithms Laws of Logarithms Base Change

Lecture #4

18/34

Natural Logarithms

Of all possible bases a for logarithms, it turns out that the most convenient choice for the purposes of Calculus is the number e.

Definition

The logarithm with base *e* is called the **natural logarithm** and denoted:

 $\ln x := \log_e x.$

We recall again that, by the definition of inverse functions, we have

 $y = \ln x \quad \iff \quad$

/	$e^{y} = x.$
\Leftrightarrow	e' = x.

Properties of Natural Logarithms		
1. $\ln 1 = 0$	3. In $e^x = x$	
2. $\ln e = 1$	4. $e^{\ln x} = x$	
http://www.ms.uky.edu/~ma137	Lecture #4	19

Definition Definition **Graphs of Logarithmic Functions Graphs of Logarithmic Functions Exponential Functions Exponential Functions Common and Natural Logarithms Common and Natural Logarithms** Logarithmic Functions Logarithmic Functions Laws of Logarithms Laws of Logarithms Base Change Base Change Example 11: Example 12: Evaluate each of the following expressions: Graph the function $y = 2 + \ln(x - 3)$. y= eu(x-3) $\ln e^9$ — 9 y = lu(x) $\ln \frac{1}{e^4} = \ln (e^{-4}) = -4$ 1 y=2+ln (x-3 ln 2 ام 3 4 20/3421/34http://www.ms.uky.edu/~ma137 Lecture #4 http://www.ms.uky.edu/~ma137 Lecture #4 Definition **Graphs of Logarithmic Functions** Graphs of Logarithmic Functions **Exponential Functions Exponential Functions Common and Natural Logarithms Common and Natural Logarithms** Logarithmic Functions Logarithmic Functions Laws of Logarithms Laws of Logarithms Base Change **Base Change** Example 13: Laws of Logarithms Find the domain of the function $f(x) = 2 + \ln(10 + 3x - x^2)$. Since logarithms are 'exponents', the Laws of Exponents give rise to the Laws of Logarithms: f(x) is defined when 10+3x-x²>0 Laws of Logarithms Let a be a positive number, with $a \neq 1$. Let A, B and C be any $x^2 - 3x - 10 < 0 \quad (x - 5)(x + 2) < 0$ real numbers with A > 0 and B > 0. 1. $\log_a(AB) = \log_a A + \log_a B;$ - 24++ x - 5 domain: 2. $\log_a\left(\frac{A}{B}\right) = \log_a A - \log_a B;$ + + + + + -2< x<5 x+2 3. $\log_a(A^C) = C \log_a A$. + + (x-5)(x+2)22/34http://www.ms.uky.edu/~ma137 Lecture #4 http://www.ms.uky.edu/~ma137 Lecture #4

Exponential Functions Logarithmic Functions Laws of Logarithms Laws of Logarithms Base Change

Definition

Proof of Law 1.: $\log_a(AB) = \log_a A + \log_a B$

Let us set

 $\log_a A = u$ and $\log_a B = v$.

When written in exponential form, they become

Thus: $\frac{\log_{a}(AB)}{=} \begin{array}{l} a^{u} = A \quad \text{and} \quad a^{v} = B. \\ = \log_{a}(a^{u} a^{v}) \\ = \log_{a}(a^{u+v}) \\ \frac{why?}{=} \quad u+v \\ = \log_{a}A + \log_{a}B. \end{array}$

In a similar fashion, one can prove **2.** and **3.**

Use the Laws of Logarithms to expand each expression:

$$\log_{2}(2x) = \log_{2}(2) + \log_{2}(x) = 1 + \log_{2}x$$

$$\log_{5}(x^{2}(4-5x)) = \log_{5}x^{2} + \log_{7}(4-5x)$$

$$= 2 \log_{5}x + \log_{7}(4-5x)$$

$$\log(x\sqrt{\frac{y}{z}}) = \log_{7}x + \log((\frac{y}{z})^{1/2}) =$$

$$\log_{7}(x\sqrt{\frac{y}{z}}) = \log_{7}x + \log((\frac{y}{z})^{1/2}) =$$

$$\log_{7}(x+\frac{1}{2}(\log(\frac{y}{z})) = (\log_{7}x+\frac{1}{2}\log_{7}y-\frac{1}{2}\log_{7}y)$$

$$\log(x+\frac{1}{2}(\log(\frac{y}{z})) = (\log_{7}x+\frac{1}{2}\log_{7}y-\frac{1}{2}\log_{7}y)$$

$$\log(x+\frac{1}{2}\log_{7}y) = \log_{7}x + \log((\frac{y}{z})^{1/2}) =$$

$$\log_{7}(x+\frac{1}{2}\log_{7}y) = \log_{7}x + \log_{7}(\frac{y}{z})$$

Example 14:

Definition Graphs of Logarithmic Functions **Exponential Functions Common and Natural Logarithms** Logarithmic Functions Laws of Logarithms

Comment (cont.d)

1

t	$\log(t+1)$	$\log P = \log 80 - 0.3 \log(t+1)$	
0	0	1.903	
6	0.845	1.650	
12	1.114	1.569	
18	1.279	1.519	
24	1.398	1.484	
$\log P$ $\log(t+1)$			
http://www.ms.uky.edu/~ma137 Lecture #4			

Base Change

(a)
$$\log(S) = \log(c) + \log(A^{k})$$

= $\log(cA^{k})$
So i $\int S = aA^{k}$

(b) Suppose
$$S = cA^3$$
. Now suppose that
for a certain value A_0 with obtain
 $S_0 = cA_0^3$. If we plup in into
the formula $A_1 = 2A_0$ we get
 $S_1 = cA_1^3 = c(2A_0)^3 = 8 cA_0^3 = 8S_0$

Example 19 (Biodiversity):

Some biologists model the number of species S in a fixed area A(such as an island) by the Species-Area relationship

$$\log S = \log c + k \log A,$$

where c and k are positive constants that depend on the type of species and habitat.

- (a) Solve the equation for S.
- (b) Use part (a) to show that if k = 3 then doubling the area increases the number of species eightfold.

32/34

Exponential Functions Logarithmic Functions

Change of Base

31/34

For some purposes, we find it useful to change from logarithms in one base to logarithms in another base. One can prove that:

Definition

Laws of Logarithms Base Change

Graphs of Logarithmic Functions

Common and Natural Logarithms

$$\log_b x = \frac{\log_a x}{\log_a b}.$$

Proof: Set $y = \log_b x$. By definition, this means that $b^y = x$. Apply now $\log_a(\cdot)$ to $b^y = x$. We obtain

$$\log_a(b^y) = \log_a x \qquad \rightsquigarrow \qquad y \log_a b = \log_a x.$$

Thus

$$\log_b x = y = \frac{\log_a x}{\log_a b}$$

http://www.ms.uky.edu/~ma137 Lecture #4 Exponential Functions Logarithmic Functions Logarithmic Functions Base Change

Example 20:

Use the Change of Base Formula and common or natural logarithms to evaluate each logarithm, correct up to five decimal places:

$$\frac{\log_{5} 2}{\log_{3} 5} = \frac{\log_{3} 2}{\log_{3} 5} \cong 0.43068$$

$$\log_{4} 125 = \frac{\log_{3} 125}{\log_{3} 4} \cong 3.48289$$

$$\log_{\sqrt{3}} 5 = \frac{\log_{3} 5}{\log_{3} (\sqrt{3})} = \frac{\log_{3} 5}{\frac{1}{2} \log_{3} 3} \cong 2.92995$$

$$\frac{100}{2} (\sqrt{3}) = \frac{\log_{3} 5}{\frac{1}{2} \log_{3} 3} \cong 2.92995$$

$$\frac{100}{2} (\sqrt{3}) = \frac{100}{2} \log_{3} 3 = \frac{100}{2} \log_{3} \log_{3} 3 = \frac{100}{2} \log_{3} \log_{3}$$