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Applications
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Functions (5):
Modeling with Exponential and Logarithmic Functions
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Goal:

population growth, radioactive decay, heat diffusion,

Many processes that occur in nature, such as

can be modeled using exponential functions.
Logarithmic functions are used in models for the
loudness of sounds, the intensity of earthquakes, and
many other phenomena.
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Exponentlal Equations
Logar S

Exponential Equations

An exponential equation is one in which the variable occurs in the

exponent. For example,
2 =7

We take the (either common or natural) logarithm of each side and
then use the Laws of Logarithms to ‘bring down the variable’ from
the exponent:

log(3*2) = log 7

~  (x+2)log3=log7
- 42— log 7
log 3
log 7
~ X = — 2 =~ —0.228756
log 3
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tial Equatlons
mic Equa s
Applications

1. Isolate the exponential expression on one side of the equation.

2. Take the logarithm of each side, then use the Laws of
Logarithms to ‘bring down the exponent.’

3. Solve for the variable.

4. Check your answer.
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Solve the equations:

034 =18 = 4
Take Qoa of bott wdes

X Qoalr Q°aé

° 3x+4 — 21—2x

2y(3°7) = &y (277)
—_ x?oa:s +2x&,az-.- Qod?— -4 eao,z

o x (g3 4 28g2)= oy (%)
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#x&a_

(x+w) eoa3 =(-2%) e.a 2
by(349) |

X=

.

mn
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Solve the following exponential equations of quadratic type:
x
co = (3} -3%-#2=0
k x . wmes
(3") -3*-32=0 . Lt u=3 ge X ec] Geco

ui-u=-32=0 ~ Qu-q)(u+l)=e X u=9q or us=4d

em e weil*=1q - (X=2) J us3l* e <& t'w.EQQ

o 4 —3(47%) =2
4" - Z—, c2 o (W) -3 =24 ~
(4")‘- 24" —3c0. AS kfac uzg’ ~— i
ul-2u=-3=0 = Qu—‘s)(u+|)=o =) U=3 er us

u= 4’:-( c’mBOJA'LQ

or
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Solve the equation  x?e* + xeX — 6e* = 0.
2
e*(x*+x-¢)=0

X

Logarithmic Equations

A logarithmic equation is one in which a logarithm of the variable
occurs. For example,

log,(25 — x) = 3.

To solve for x, we write the equation in exponential form, and then
solve for the variable:

25 —x=23 ~ 25—x=8 ~ x=1T.

Alternatively, we raise the base, 2, to each side of the equation; we
then use the Laws of Logarithms:

2|og2(25—x) — 23 ~s 25 — x = 23 s x = 17.

1. Isolate the logarithmic term on one side of the equation; you
may first need to combine the
logarithmic terms.

2. Write the equation in exponential form (or raise the base to
each side of the equation).

3. Solve for the variable. Check your answers!
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Solve the following equations:

= L3, x" = e°37» e

2 le
= 7.%3%)‘ -;‘0‘?1' = x 216 J(x= '4-,%

o log(x +3) = logo(x — 3) + logs 9 + 4%

l
-poal(x-ﬂ) —%;("'3)= 2 +3

o 2log; x = log7 16

T x+3
= %a-,,[ ):;] =5 oor = %=y =
— -x =3+ q9
37_()(-3).—: x+3 =) 32x -x=3*+96 (x= 3+
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Solve the following equations:

o logg(x +5) + logg x =2
2

%‘[Q”g).x_}z = 6 =

ctecx =3¢=0 = EFD(x-9=2

’BQoax =(Q°3x)3 fet w = Qog x od qet
Iu=u = W-3uzo uw (ui-3)=-o
= u=9, i3 Yiu su=0,2/3
=]
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The basic source of genetic diversity is mutation (that is, changes
in the chemical structure of genes). If genes mutate at a constant
rate m (with 0 < m < 1) and if other evolutionary forces are
neglegible, then the frequency F of the original gene after t
generations is

F = Fo(l — m)t,
where Fy is the frequency at t = 0.

(a) Solve the above equations for t, using log.
(b) If m=5x 1075, after how many generations is F/Fy = 1/27?
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@ F=f (-m' = F/F; =(-m*

] Qoa (F/F-.).? (’,oa[(l-'n)‘] =t 'eo?(l-m)

T

f': oQO%(F/‘Fo)
Log (1-m)

zﬁoa(v’-)
&a('- 5 107") - 3’““‘“‘




Growth Models
Decay models

Logarithmic Scales ot
Example 7 (Frog Population): n(k)= 8S.e

The frog population in a small pond grows exponentially. The LL) n (3> = gs. Qo. &3 <. eo.?h—
current population is 85 frogs, and the relative growth rate is 18% =
per year. ~ |45. 8¢

(a) Which function models the population after t years?
(b) Find the projected frog population after 3 years. 0.t
(c) When will the frog population reach 6007 (c' )

(d) When will the frog population double?
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Applications Logarithmic Scales

XPOHtil Models Population Growth

(@) Let & ®e 4o dou.Le"y huae

/g{ 2 ="M (Q.) = g/( e ©.\8 b The formula for population growth of several species is the same as
that for continuously compounded interest. In fact in both cases ‘
0.18- & the rate of growth r of a population (or an investment) per time
ﬁ 2 = € period is proportional to the size of the population (or the amount
0.18. 8 of an investment).
_— e (2) = L <€ ) 1 Exponential Growth Model ,
\ e | If ng is the initial size of a population that experiences
= o.1¢: exponential growth, then the population n(t) at time t increases |
according to the model |
b 2 L ggsyew =" ‘
.. > em——TT z . = ‘
0.1 ),

where r is the relative rate of growth of the population (expressed
as a proportion of the population).
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Growth Models ential ions Growth Models
Decay models vic E ions Decay models

Applications Logarithmic Scales icati Logarithmic Scales
Ex cteria Culture)
Biologists sometimes express the growth rate in terms of the ‘ The initial count in a culture of bacteria (growing exponentially)
doubling-time h, the time required for the population to double in ! was 50. The count was 400 after 2 hours.
) In2
size: r = - (a) What is the relative rate of growth of the bacteria population?

(b) When will the number of bacteria be 50,0007
Xt
h @) nlt) =5%e . we ke t6 aX

Proof: Indeed, from

2ng = n(h) = ngpe" w2 2r
we obtain 400=n(2) = SOe - L= €
(A, g o
2=e" ~ In2=rh ~ r:lnT2. —_— o 8 =¢ev\(e ) ) "'=Q“T~|.039; |
(ov ~ = 103.93 %) l.\'m!ﬂ
Using the doubling-time h, we can also rewrite n(t) as: i kb) l“(t)_—_ so e\.ggq;t <o oot SQJ ocoo=SO € |
: In(2) n(2t _
n(t)] = noe™ = npe £ = nge"@’")| = p2t/h | j = \o0 = o3 %= &«Q":) ~ 6.¢ bowns
‘ “ ' o - 1.039%
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Applications Logarithmic Scales

Radioactive Decay

Radioactive substances decay by spontaneously emitting radiations. Physicists sometimes express the rate of decay in terms of the

i is situati i i . : . In2
Also in this situation, the rate of decay is proportional to the mass half-life h, the time required for half the mass to decay: r — —=.
of the substance. h
This is analogous to population growth, except that the mass of Proof: Indeed, from
radioactive material decreases. 1 (h) —h

: : —mg = m(h) = mge

Radioactive Decay Model 2 0
If mg is the initial mass of a radioactive substance with half-life h, [ we obtain
then the mass m(t) remaining at time t is modeled by the function % —e ™ InZ=—th ~ —InN2=—rh ~ r— %

m(t) = mpe

|

—rt i ;
i |
|

where r is the relative rate of decay of the radioactive substance.

In(2)

e mpe h

t In(2—t/h)

m(t)|= mpe™ = mge

Il

3

S
ey
N —
N
5
>
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Example 10

The mass m(t) remaining after t days from a 40-g sample of
thorium-234 is given by:
m(t) = 4000277t
(a) How much of the sample will be left after 60 days?
(b) After how long will only 10-g of the sample remain?

-o. . C
(@) am(€0) = 40'3002“ °

2 #.59036 Grau,
"4
-0.023%: t

= 40- —

-o.0237¢t
=tne

= 50.046 dan

Lecture #5
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The half-life of cesium-137 is 30 years. Suppose we have a 10-g
sample. How much of the sample will remain after 80 years?

Wt Q\M ‘e\ = \,\aQ#-Q' = 4_4??. or

- W2 A2

4\_— ) —3—'0' 2.—" 0.013\ .
-0.23\t
’-rﬁu/) M(‘\:)= 10e
-0,231: 80
F‘mﬂa m(8) =10 ~ I.S?Ya_
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Newton’ Law of oli

Newton's Law of Cooling states that the rate of cooling of an
object is proportional to the temperature difference between the
object and its surroundings, provided that the temperature
difference is not too large. Using Calculus, the following model can
be deduced from this law:

The Model

If Do is the initial temperature difference between an object and its
surroundings, and if its surroundings have temperature Tg, then
the temperature of the object at time t is modeled by the function |

T(t) — Ts —+ Doe_kt

where k is a positive constant that depends on the object.

|

Lecture #5
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xample 11 (Cooling Turke

A roasted turkey is taken from an oven when its temperature has

reached 185°F and is placed on a table in a room where the

temperature is 75°F.

(a) If the temperature of the turkey is 150°F after half an hour,
what is its temperature after 45 minutes?

(b) When will the turkey cool to 100°F?

|
|
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Do =185-%5= |10 Pamce

—wt
T® = 75 +u0e "
Se T()=FS+1l0e”

(o)

—3ok  (so-%
_'é € = ho = ?\‘;
= k= &_(_?5;/2_)_ 0.012%¢

=30

Henee !T(’c)= IT+N0e
ond  T(45)= 136.93 °F

(b) Cluck that T(E)=100°F o =116 mn
(abmet 2 hounr)

-0.0123¢t l

Growth Models
Decay models

Logarithmic Scales

Newton's Law of Cooling is used in homicide investigations to
determine the time of death. Immediately following death, the
body begins to cool (its normal temperature is 98.6°F). It has been
experimentally determined that the constant in Newton's Law of
Cooling is k = 0.1947, assuming time is measured in hours.

Growth Models
Decay models

Applications Logarithmic Scales

Logarithmic Scales

When a physical quantity varies over a very large range, it is often
convenient to take its logarithm in order to have a more
manageable set of numbers. We discuss the case of the pH scale,
which measures acidity. You should refer to our textbook (Section
1.3) for other quantities that are measured on logarithmic scales;
they include earthquake intensity (Richter scale), loudness of
sounds (decibel scale), light intensity, information capacity,
radiation, etc.
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Logarithmic Scales

The pH Scale
Chemists measured the acidity of a solution by giving its hydrogen
ion concentration until Sorensen, in 1909, defined a more
convenient measure:

pH = —log[H"]

where [HT] is the concentration of hydrogen ions measured in
moles per liter (M).

Solutions are defined in terms of the pH as follows:

those with pH = 7 (or [H*] = 107"M) are neutral,

those with pH < 7 (or [HT] > 10="M) are acidic,

those with pH > 7 (or [HT] < 107"M) are basic.
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Example 12 (Finding pH

):|

The hydrogen ion concentration of a sample of each substance is
given. Calculate the pH of the substance.

(a) Lemon juice: [HT] =5.0 x 107°M
‘FH = — Qa?(g.O- IO.:‘) = - Qpé (S') - eoa‘o..z =

= 2 —oQ.eSS' = 2.30\
(b) Tomato juice: [HT] = 3.2 x 107*M

He — Qo (32 10Y) = =R 32 - s 1o~ ¥
‘ 2( a = 4-9333.2:3_%

(c) Seawater: [H*] =5.0 x 107°M
=S 107°) = - Lgl5) = Loglta™) =
= 9 -eoaS = £.20|

Calculate the hydrogen ion concentration of each substance from
its pH reading.

(a) Vinegar: pH =3.0 . .
3.0-:—'@0:3 [_HJ—’Q Q"a(HJ°-3
— [#]-10"
(b) Milk: pH =6.5

cs=-%5 (0] —= Log(HI=-0Cr

6.\

= [H]- 1

http://www.ms.uky.edu/“mal37 Lecture #5




