MA 138 – Calculus 2 with Life Science Applications Solving Differential Equations (Section 8.1)

Alberto Corso

(alberto.corso@uky.edu)

Department of Mathematics University of Kentucky

February 7 & 9, 2018

Differential Equations (\equiv DEs)

A differential equation is an equation that contains an unknown function and one or more of its derivatives.

For example

$$\frac{dy}{dx} + 6y = 7;$$

$$\frac{dy}{dt} + 0.2 t y = 6t;$$

$$\frac{dP}{dt} = \sqrt{P t};$$

$$xy' + y = y^2.$$

Differential equations can contain derivatives of any order; for example,

$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} = xy \qquad \text{or} \qquad y'' + 6y' - xy = 0$$

$$y'' + 6y' - xy = 0$$

is a DE containing the first and second derivative of the function y = y(x).

If a differential equation contains only the first derivative,

it is called a **first-order differential equation**: $\frac{dy}{dx} = h(x, y)$.

DEs arise for example in biology (e.g. models of population growth), economics (e.g. models of economic growth), and many other areas.

exponential growth model:

$$\frac{dN}{dt} = rN \qquad N(0) = N_0;$$

logistic growth model:

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) \qquad N(0) = N_0;$$

von Bertalanffy models:

$$\frac{dL}{dt}=k(L_{\infty}-L)\qquad L(0)=L_{0},$$

$$\frac{dW}{dt} = \eta W^{2/3} - \kappa W \qquad W(0) = W_0;$$

Solow's economic growth model:

$$\frac{dk}{dt} = sk^{\alpha} - \delta k \qquad k(0) = k_0.$$

Example 1

Consider the differential equation $(t+1)\frac{dy}{dt} - y + 6 = 0$.

Which of the following functions

$$y_1(t) = t + 7$$
 $y_2(t) = 3t + 21$ $y_3(t) = 3t + 9$

are solutions for all t?

Separable Differential Equations

We will restrict ourselves to first-order differential equations

$$\frac{dy}{dx} = h(x, y)$$
 of the form $\frac{dy}{dx} = f(x)g(y)$.

That is, the right-hand side of the equation is the product of two functions, one depending only on x, f(x), the other only on y, g(y).

Such equations are called **separable differential equations**.

This type of differential equations includes two special cases:

pure-time differential equations:
$$\frac{dy}{dx} = f(x)$$
 [i.e., $g(y) \equiv 1$]

autonomous differential equations: $\frac{dy}{dx} = g(y)$ [i.e., $f(x) \equiv 1$]

(DEs of this form are frequently used in biological models.)

In order to solve the separable differential equation

$$\frac{dy}{dx} = f(x)g(y), \qquad (*)$$

we divide both sides of (*) by g(y) [assuming that $g(y) \neq 0$]:

$$\frac{1}{g(y)}\frac{dy}{dx}=f(x).$$

Now, if y = u(x) is a solution of (*), then u(x) satisfies

$$\frac{1}{g[u(x)]}u'(x)=f(x).$$

If we integrate both sides with respect to x, we find that

$$\int \frac{1}{g[u(x)]} u'(x) dx = \int f(x) dx \qquad \text{or} \qquad \int \frac{1}{g(y)} dy = \int f(x) dx$$

$$\int \frac{1}{g(y)} \, dy = \int f(x) \, dx$$

since g[u(x)] = g(y) and u'(x)dx = dy.

Example 1 (again)

Solve the differential equation $(t+1)\frac{dy}{dt} - y + 6 = 0$.

Example 2 (Online Homework # 2)

Solve the following initial value problem

$$\frac{dy}{dt} + 0.2ty = 6t$$

with y(0) = 4.

Example 3 (Online Homework # 3)

Find the solution of the differential equation

$$\frac{dP}{dt} = \sqrt{P t}$$

that satisfies the initial condition P(1) = 7.

Example 4 (Online Homework # 5)

Find the solution of the differential equation

$$xy' + y = y^2$$

that satisfies the initial condition y(1) = -1.

Pure-Time Differential Equations

In many applications, the independent variable represents time. If the rate of change of a function depends only on time, we call the resulting differential equation a **pure-time differential equation**. Such a differential equation is of the form

$$\frac{dy}{dx}=f(x), \quad x\in I, \qquad y(x_0)=y_0,$$

where I is an interval and x represents time; the number x_0 is in the interval I.

The solution can then be written as

$$y(x) = y_0 + \int_{x_0}^x f(u) du.$$

Example 5 (Example # 1, Section 8.1, p. 392)

Suppose that the volume V(t) of a cell at time t changes according to

$$\frac{dV}{dt} = \sin t \qquad \text{with} \qquad V(0) = 3.$$

Find V(t).

Autonomous Differential Equations

Many of the differential equations that model biological situations are of the form

$$\frac{dy}{dx} = g(y)$$

where the right-hand side does not explicitly depend on x. These equations are called **autonomous differential equations**.

Formally, we can solve this autonomous differential equation by separation of variables. We begin by dividing both sides of the equation by g(y) and multiplying both sides by dx, to obtain

$$\frac{1}{g(y)}dy=dx.$$

Integrating both sides then gives

$$\int \frac{1}{g(y)} dy = \int dx.$$

Example 6 (Online Homework # 1)

Find the particular solution of the differential equation

$$\frac{dy}{dx} + 6y = 7$$

satisfying the initial condition y(0) = 0.

Example 7 (Problem # 35, Section 8.1, p. 405)

Find the general solution of the differential equation

$$\frac{dy}{dx} = y^2 - 4.$$