
FIBONACCI’S NUMBERS, A POPULATION MODEL,

AND POWERS OF MATRICES

The goal of these notes is to illustrate an application of large powers of matrices. Our primary tools
are the eigenvalues and eigenvectors of the matrix. We illustrate this with two familiar examples.

Fibonacci’s numbers. We are all familiar with Fibonacci’s sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

What if we wanted to compute ‘quickly’ (this is the keyword!) the 1000th Fibonacci’s number?
Here is how matrices can help us.

Write f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13, . . . In other words, Fibonacci’s
numbers are given by the recursive relation fn+2 = fn+1 + fn for n ≥ 0, with f0 = 0 and f1 = 1.
Notice that[

1
1

]
=

[
1 1
1 0

] [
1
0

] [
2
1

]
=

[
1 1
1 0

] [
1
1

] [
3
2

]
=

[
1 1
1 0

] [
2
1

]
. . .

That is, we can write the previous expressions as[
f2
f1

]
=

[
1 1
1 0

] [
f1
f0

] [
f3
f2

]
=

[
1 1
1 0

] [
f2
f1

] [
f4
f3

]
=

[
1 1
1 0

] [
f3
f2

]
. . .

From this it also follows that[
f3
f2

]
=

[
1 1
1 0

]2 [
f1
f0

] [
f4
f3

]
=

[
1 1
1 0

]3 [
f1
f0

]
. . .

In general we see that if we set un =

[
fn+1

fn

]
we have the recursive relation

(1) un+1 =

[
fn+2

fn+1

]
=

[
1 1
1 0

]
︸ ︷︷ ︸

A

[
fn+1

fn

]
= Aun u0 =

[
1
0

]
.

We can also solve (1) explicitly and produce the solution in terms of the powers of the matrix A.
That is

(2) un = Anu0 u0 =

[
1
0

]
.

Notice that (1) gives us the ‘transition’ (relation) between consecutive Fibonacci’s numbers. More
specifically, the equation un+1 = Aun for n ≥ 0 encodes the relation fn+2 = fn+1+ fn (the second
relation encoded is the tautology fn+1 = fn+1).

Notice that (2) gives us a way to calculate un (that is fn and fn+1) from u0 (that is f0 and f1)
by means of the equation un = Anu0.

Let us compute the eigenvalues and eigenvectors of the matrix A introduced above. Despite the
fact that A is rather simple, the eigenvalues and the eigenvectors of A are not ‘nice’ at all! The
characteristic polynomial of A is

det

[[
1 1
1 0

]
− λ

[
1 0
0 1

]]
= det

[
1− λ 1
1 −λ

]
= (1− λ)(−λ)− 1 = λ2 − λ− 1.

Hence we obtain the following eigenvectors

λ2 − λ− 1 = 0 ⇐⇒ λ1,2 =
1±

√
5

2
.

1
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λ1 =
1 +

√
5

2
: In order to find (one of) the eigenvector(s) v1 associated to λ1 we need to solve

the following system of equations

Av1 = λ1v1 ⇐⇒ (A− λ1I2)v1 = 0.

That is we need to find the solutions of 1− 1 +
√
5

2
1

1 −1 +
√
5

2


︸ ︷︷ ︸

A−λ1I2

[
a
b

]
︸ ︷︷ ︸

v1

=

[
0
0

]
.

Since we are subtracting one of the two values that make the matrix A singular, we have that the
system of two linear equations in a and b reduces to the single equation

a− 1 +
√
5

2
b = 0.

If we set b = 1 then a =
1 +

√
5

2
. Hence we get the eigen pair

λ1 =
1 +

√
5

2
v1 =

 1 +
√
5

2

1

 .

λ2 =
1−

√
5

2
: In order to find (one of) the eigenvector(s) v2 associated to λ2 we need to solve

the following system of equations

Av2 = λ2v2 ⇐⇒ (A− λ2I2)v2 = 0.

That is we need to find the solutions of 1− 1−
√
5

2
1

1 −1−
√
5

2


︸ ︷︷ ︸

A−λ2I2

[
c
d

]
︸ ︷︷ ︸

v2

=

[
0
0

]
.

Since we are subtracting the other of the two values that make the matrix A singular, we have
that the system of two linear equations in a and b reduces to the single equation

c− 1−
√
5

2
d = 0.

If we set d = 1 then c =
1−

√
5

2
. Hence we get the eigen pair

λ2 =
1−

√
5

2
v2 =

 1−
√
5

2

1

 .

Let us now rewrite the vector u0 as a linear combination of the eigenvectors v1 and v2. That is
we are seeking values c1 and c2 such that c1v1 + c2v2 = u0

c1

 1 +
√
5

2

1

+ c2

 1−
√
5

2

1

 =

[
1
0

]
⇐⇒

 c1
1 +

√
5

2
+ c2

1−
√
5

2

c1 + c2

 =

[
1
0

]
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⇐⇒

 1 +
√
5

2

1−
√
5

2

1 1

[
c1
c2

]
=

[
1
0

]
.

This system of linear equations leads to the solutions c1 = 1/
√
5 and c2 = −1/

√
5. That is

u0 =
1√
5
v1 −

1√
5
v2.

Hence the relation un = Anu0 translates into the following

un = An

(
1√
5
v1−

1√
5
v2

)
⇐⇒ un =

1√
5
Anv1−

1√
5
Anv2 ⇐⇒ un =

1√
5
λn
1v1−

1√
5
λn
2v2

⇐⇒

 fn+1

fn

 =
1√
5

(
1 +

√
5

2

)n

 1 +
√
5

2

1

− 1√
5

(
1−

√
5

2

)n

 1−
√
5

2

1


(In other words we have un =

::::
Anu0 = An(c1v1 + c2v2) = c1A

nv1 + c2A
nv2= c1λ

n
1v1 + c2λ

n
2v2

::::::::::::::::::
.)

The above matrix equation translates into the following two (consistent) expressions

fn+1 =
1√
5

(
1 +

√
5

2

)n+1

− 1√
5

(
1−

√
5

2

)n+1

and fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

.

Observe that the eigenvalue λ1 = (1 +
√
5)/2 ≈ 1.618 (the largest, or dominant, eigenvalue) and

the eigenvalue λ2 = (1 −
√
5)/2 ≈ −0.618. Hence λn

2 → 0 (in an oscillatory fashion) as n → ∞.
Thus we conclude that (for n sufficiently large)

fn = closest integer to
1√
5

(
1 +

√
5

2

)n

.

The eigenvalue λ1 = (1 +
√
5)/2 is also called the golden ratio.

Let us check the above result in the chart below

n
1√
5

(
1 +

√
5

2

)n

fn

0 0.4472 0
1 0.7235 1
2 1.1707 1
3 1.8943 2
4 3.0649 3
5 4.9591 5
6 8.0239 8
7 12.9826 13
8 21.0059 21
9 33.9876 34
...

...
...
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A population model. If we analyze our description of the Fibonacci’s numbers, we realize that

we had a matrix A that was giving us a transition between a set/state un =

[
fn+1

fn

]
to the next

set/state un+1 =

[
fn+2

fn+1

]
. Thus, what we did for the Fibonacci’s numbers can be applied to

describe the dynamics of a population that have a finite number (not necessarily two) of stages in
life.

Suppose that we consider an hypothetical animal that has two life stages:

juvenile adult.

Suppose that we count the number of members of this population on a weekly basis. Say

Jt = number of juveniles at week t At = number of adults at week t.

The relation between the population during two consecutive weeks can reasonably be described as
follows

(3) Jt+1 = Jt −mJt − gJt + fAt,

where the term “−mJt” accounts for the fraction of juveniles that dies, the term “−gJt” accounts
for the fraction of juveniles that becomes adult, and the term “+fAt” accounts for the newborns;

(4) At+1 = At − µAt + gJt,

where the term “−µAt” accounts for the fraction of adults that dies and the term “+gJt” accounts
for the fraction of juveniles that becomes adult.

Observe that m, g, f, µ are numbers that denote weekly rates, which we assume to be constant for
each period. We can express express the relations described above in matrix form as

(5)

[
Jt+1

At+1

]
︸ ︷︷ ︸
state t+1

=

[
1−m− g f

g 1− µ

]
︸ ︷︷ ︸

A

[
Jt
At

]
︸ ︷︷ ︸
state t

.

If we define the vector ut =

[
Jt
At

]
for any integer t ≥ 0 then we can rewrite the above expression

in the following recursive way

ut+1 = Aut with u0 =

[
J0
A0

]
;

in an explicit form we have

ut = Atu0 with u0 =

[
J0
A0

]
.

Since we are interested in the dynamics of this population we have another example of large powers
of a matrix.

Example: We illustrate the above model with a numerical example. Suppose that g = m = 0.5,
f = 2, and µ = 0.9. Hence (5) becomes

ut+1 =

[
0 2
0.5 0.1

]
ut.

We can easily check that the eigen pairs are

λ1 = 1.051 ↭ v1 =

[
1.9029

1

]
λ2 = −0.951 ↭ v2 =

[
−2.102

1

]
.

As we discussed in the case of the Fibonacci’s numbers, the general solution to our problem is

ut =

[
Jt
At

]
= Atu0 = At(c1v1 + c2v2) = c1A

tv1 + c2A
tv2 = c1λ

t
1v1 + c2λ

t
2v2,
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where c1 and c2 are the values that allow us to rewrite the vector u0 as a linear combination of
the eigenvectors v1 and v2.
As it happened in the case of the Fibonacci’s numbers, one of the eigenvalues is dominant. Namely,
λ1 = 1.051 > −0.951 = λ2. Thus we can rewrite our solution as

ut =

[
Jt
At

]
= λt

1

(
c1v1 + c2

(
λ2

λ1

)t

v2

)
≈

as t→∞
λt
1c1v1.

It makes sense to call the dominant eigenvalue λ1 the growth rate (λ1 = 1.051 ↭ growth rate =
5.1%) and the corresponding eigenvector v1 the stable age structure. Also observe that the sec-
ond term in the general solution leads to an oscillating (decaying) behavior caused by the factor
(−0.951)t.

As we observed earlier in the long run we have

ut =

[
Jt
At

]
≈ c1(1.051)

t

[
1.9029

1

]
.

This implies that the ratio
Jt
At

=
c1(1.051)

t1.9029

c1(1.051)t
= 1.9029 is constant. This means that in the

long run the population will consist of 65.6% of juveniles and 34.4% of adults1. In other words
there will be about 1.9 juveniles for every adult.

Remark. The above population model is an example of a Leslie matrix. You can read more
about Leslie matrices (even for populations with more than two life stages!) on pages 459-464 and
483-486 of our textbook Calculus for Biology and Medicine by Claudia Neuhauser. The example
is taken from the book Mathematical Methods in Biology by J.D. Logan and W. Wolensky (pages
103-105).
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1If x represents the percentage of juvenile then 100− x represents the percentage of adults. Hence the equation
(ratio) x/(100− x) = 1.9029 gives the solution x = 190.29/2.9029 ≈ 65.6 and 100− x ≈ 34.4.


