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A Comparison Result for Improper Integrals

In many cases, it is difficult (if not impossible) to evaluate an integral
exactly. For example, it takes some work to show that∫ ∞

−∞
e−x2 dx =

√
π

∫ ∞

−∞

1
1 + x2 dx = π.

In dealing with improper integrals, it frequently suffices to know whether
the integral converges.

Instead of computing the value of the improper integral exactly, we can
then resort to simpler integrals that either dominate or are dominated by
the improper integral of interest.

We will explain this idea graphically.
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Convergence Test
Test for Convergence
We assume that f(x) ≥ 0 for x ≥ a.
To show that

∫ ∞

a
f(x) dx is convergent it is

enough to find a function g(x) such that
g(x) ≥ f(x) for all x ≥ a;∫ ∞

a
g(x) dx is convergent.

It is clear from the graph that 0 ≤
∫ ∞

a
f(x) dx ≤

∫ ∞

a
g(x) dx.

If
∫ ∞

a
g(x)dx < ∞, it follows that

∫ ∞

a
f(x) dx is convergent,

since
∫ ∞

a
f(x) dx must take on a value between 0 and

∫ ∞

a
g(x)dx.
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Example 1 (Example #9, Section 7.4, p. 395)

Show that
∫ ∞

−∞
e−x2 dx converges.

0 1 x

y

y = e−x2

Note: It is an hard fact to show that
∫ ∞

−∞
e−x2 dx =

√
π.
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Example 2 (Problem #38, Section 7.4, p. 397)

Show that
∫ ∞

−∞

1√
1 + x4 dx converges.

0 1 x

y
y = 1√

1+x4
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Example 3 (Online Homework # 8)
Let f(x) be a continuous function defined on the interval [2,∞) such that

f(4) = 7 |f(x)| < x3 + 3
∫ ∞

4
f(x)e−x/8 dx = −6.

Determine the value of ∫ ∞

4
f′(x)e−x/8 dx.
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Example 4 (Problem #8(b), Exam 1, Spring 14)
It is given that for x ≥ 300 the inequality 3 ln x ≤

√x holds.
Use the above inequality and the Comparison Theorem for improper
integrals to conclude that ∫ ∞

300
e−

√x dx
coverges.

0

1

−1
x

y

graph of y =
√x − 3 ln(x)

100 200 300 400
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Example 5 (Problem #9(b), Exam 1, Spring 13)
If x is really big, say bigger than 100, one has

−
√

x ≤ −2 ln x = ln

(
1
x2

)
.

Use this inequality together with the fact that the exponential is an
increasing function to determine if∫ ∞

100
e−

√x dx

converges or diverges.
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Example 6 (Problem #44, Section 7.4, p. 397)

Determine whether
∫ ∞

−∞

1
ex + e−x dx is convergent or not.
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Example 7

Show that
∫ ∞

−∞

1
1 + x2 dx ≤ 4.

Note: We will show at the end of the lecture that
∫ ∞

−∞

1
1 + x2 dx = π.
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Divergence Test

Test for Divergence
We assume that f(x) ≥ 0 for x ≥ a.
To show that

∫ ∞

a
f(x) dx is divergent it is

enough to find a function g(x) such that
g(x) ≤ f(x) for all x ≥ a;∫ ∞

a
g(x) dx is divergent.

It is clear from the graph that
∫ ∞

a
f(x) dx ≥

∫ ∞

a
g(x) dx ≥ 0.

If
∫ ∞

a
g(x)dx is divergent, it follows that

∫ ∞

a
f(x) dx is divergent.
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Example 8 (Example #10, Section 7.4, p. 396)

Show that
∫ ∞

1

1√
x +√x

dx is divergent.
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The Inverse Tangent Function tan−1(x)
The only functions that have an inverse are one-to-one functions.
The tangent function is not one-to-one.
We can make it one-to-one by restricting its domain to the interval
(−π/2, π/2). Its inverse is denoted by tan−1 or arctan.

Inverse Tangent Function
The inverse tangent function, tan−1, has

domain R
range (−π/2, π/2).

tan−1(x) = y
⇐⇒

x = tan y and − π

2 < y <
π

2 .
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Derivative of tan−1(x) (Example 4, Section 4.10, p. 199)

We want to compute d
dx(tan

−1(x)) = dy
dx .

Notice that tan−1(x) = y is equivalent to x = tan(y). If we differentiate
with respect to x the latter equation and apply the chain rule, we obtain

d
dx(x) = 1 =

d
dx(tan(y)) =

d
dy(tan(y)) ·

dy
dx = sec2(y) · dy

dx .

Thus
d
dx(tan

−1(x)) = dy
dx =

1
sec2(y) =

1
1 + tan2(y) .

We used the trigonometric identity sec2(y) = 1 + tan2(y) to get the
denominator in the rightmost term. Since x = tan(y), it follows that
x2 = tan2(y), and, hence,

d
dx(tan

−1(x)) = 1
1 + x2 .
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Integral of 1
1 + x2 (Example 4, Section 7.4, p. 391)

From the previous discussion we have∫ 1
1 + x2 dx = tan−1(x) + C.

Moreover ∫ ∞

−∞

1
1 + x2 dx = 2

∫ ∞

0

1
1 + x2 dx

= 2 lim
b−→∞

∫ b

0

1
1 + x2 dx

= 2 lim
b−→∞

[tan−1(x)]b0
= 2 lim

b−→∞
[tan−1(b)− tan−1(0)]

= 2 (π/2 − 0) = π.
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