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The Exponential Growth Model
A biological population with plenty of food, space to grow, and no threat
from predators, tends to grow at a rate that is proportional to the
population – that is, in each unit of time, a certain percentage of the
individuals produce new individuals.
If reproduction takes place more or less continuously, then this growth rate
is represented by

dN
dt = rN,

where N = N(t) is the population as a function of time t and r is the
growth rate. Assume also that N0 is the population at time t = 0.

Note: r = birth rate − mortality rate.
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Rewriting this differential equation as

1
N

dN
dt = r

says that the per capita growth rate in the
exponential model is a constant function
of population size.

1
N

dN
dt =r

N

1
N

dN
dt

r

To obtain the solution to this differential equation we proceed as follows:
dN
dt = rN ;

1
N dN = r dt ;

∫ 1
N dN =

∫
r dt.

; ln(N) = rt + C ; N = Aert,

where C and A = eC are constants.

To determine the value of the constant A we now use the initial condition
N(0) = N0. We find that A = N0. Thus N(t) = N0ert .
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The Logistic Growth Model (≡ Verhulst Model)
In short, unconstrained natural growth is exponential growth.
However, we may account for the growth rate declining to 0 by
including a factor 1 − N/K in the model, where K is a positive
constant.
The factor 1 − N/K is close to 1 (that is, has no effect) when N is
much smaller than K, and is close to 0 when N is close to K.
The resulting model,

dN
dt = rN

(
1 − N

K

)
with N(0) = N0

is called the logistic growth model or the Verhulst model.
The word “logistic” has no particular meaning in this context, except that it is commonly accepted. The second name honors
Pierre François Verhulst (1804–1849), a Belgian mathematician who studied this idea in the 19th century. Using data from the
first five U.S. censuses, he made a prediction in 1840 of the U.S. population in 1940 – and was off by less than 1%.
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Rewriting this differential equation as

1
N

dN
dt = r

(
1 − N

K

)
says that the per capita growth rate in the
logistic equation is a linearly decreasing
function of population size.

1
N

dN
dt =r(1−N

K )

•
N

1
N

dN
dt

K

r

Note: r (=growth rate) and K (=carrying capacity) are positive constants.

To obtain the solution to this differential equation we proceed as follows:
dN
dt = rN

(
1 − N

K

)
;

1

N
(

1 − N
K

) dN = r dt ;
K

N(K − N)
dN = r dt.

Next, we use the method of partial fractions, integration and a few
manipulations, to obtain the general solution to this differential equation.
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K
N(K − N)

dN = r dt ;

∫( 1
N +

1
K − N

)
dN =

∫
r dt

; ln(N)− ln(K − N) = rt + C ;
N(t)

K − N(t) = Aert,

where C and A = eC are constants.
To determine the value of the constant A we now use the initial condition
N(0) = N0. We find that A = N0/(K − N0). Thus our solution looks like

N(t)
K − N(t) =

N0
K − N0

ert ;
K − N(t)

N(t) =
K − N0
N0ert

; K−N(t) = N(t)
(

K
N0

−1
)

e−rt ; N(t) = K

1 +

(
K/N0 − 1

)
e−rt

Observe that lim
t→∞

N(t) = K.
This justifies the fact that the constant K is dubbed carrying capacity.
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Here is a typical graph of the logistic curve

N(t) = K
1 + (K/N0 − 1)e−rt .

t

N(t)

K

N0

Example 1 (Problem # 42, Section 8.1, p. 440)
Assume the size of a population, denoted N(t), evolves according to the
logistic equation. Find the intrinsic rate of growth r if the carrying
capacity K is 100, N(0) = 1, and N(1) = 20.
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Example 2 (Online Homework # 8)
Newton’s Law of Cooling states that the rate at which an object cools is
proportional to the difference in temperature between the object and the
surrounding medium. Thus, if an object is taken from an oven at 303◦F
and left to cool in a room at 76◦F, its temperature T after t hours will
satisfy the differential equation

dT
dt = k(T − 76)

where k is a positive constant.
If the temperature fell to 210◦F in 0.8 hour(s), what will it be after 5
hour(s)?
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In Example 2 we just discovered that the constant k is ≈ −0.65888. Thus,
it is customary to rewrite the DE as follows:

Newton’s Law of Cooling
It states that the rate at which an object cools is proportional to the
difference in temperature between the object and the surrounding medium:

dT
dt = −k(T − Te) T(0) = T0,

where k is a positive constant.
We can easily show that the solution of
this IVP is given by

T(t) = Te + (T0 − Te)e−kt .

Notice also that
lim

t→∞
T(t) = lim

t→∞
[Te + (T0 − Te)e−kt] = Te.

T

y=Te+(T0−Te)e−kt
T0

Te

t
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Example 3 (Problem # 24, Section 8.1, p. 439)
Consider the differential equation below, where L = L(t) is a function of t

dL
dt = k(34 − L) L(0) = 2.

Solve the differential equation
Determine k under the assumption that L(4) = 10.
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The Von Bertalanffy (Restricted) Growth Equation
A commonly used DE for the growth, in length, of an individual fish is

dL
dt = k(L∞ − L) L(0) = L0,

where L(t) is length at age t, L∞ is the asymptotic length and k is a
positive constant. The DE captures the idea that the rate of growth is
proportional to the difference between asymptotic and current length.
We can easily show that the solution of
this IVP is given by

L(t) = L∞ − (L∞ − L0)e−kt .

Notice also that
lim

t→∞
L(t) = lim

t→∞
[L∞−(L∞−L0)e−kt] = L∞.

L

y=L∞−(L∞−L0)e−kt

L∞

L0

t
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Example 4 (Online Homework # 12)
Let P(t) be the performance level of someone learning a skill as a
function of the training time t. Its derivative represents the rate at which
performance improves. If M is the maximum level of performance of which
the learner is capable, then a model for learning is given by the differential
equation dP

dt = k(M − P) where k is a positive constant.

Two new workers, John and Bob, were hired for an assembly line.
John could process 12 units per minute after one hour and 15 units per
minute after two hours. Bob could process 10 units per minute after one
hour and 16 units per minute after two hours.
Using the above model and assuming that P(0) = 0, estimate the
maximum number of units per minute that each worker is capable of
processing.
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Allometric Growth (p. 437 of Section 8.1)
In biology, allometry is the study of the relationship between sizes of parts
of an organism (e.g., skull length and body length, or leaf area and stem
diameter).
We denote by L1(t) and L2(t) the respective sizes of two organs of an
individual of age t. We say that L1 and L2 are related through an
allometric law if their specific growth rates are proportional—that is, if

1
L1

· dL1
dt = k 1

L2
· dL2

dt
for some constant k. If k is equal to 1, then the growth is called isometric;
otherwise it is called allometric.

Integrating, we find that L1 = C Lk
2 for some constant C.
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Keibler’s Law
Kleiber’s law, named after Max Kleiber’s biological work in the early
1930s, is the observation that, for the vast majority of animals, an
animal’s metabolic rate scales to the 3/4 power of the animal’s mass.
If q0 is the animal’s metabolic rate, and M the animal’s mass, then
Kleiber’s law states that

q0 ∝ M3/4.

In plants, the exponent is close to 1.

Note: The exponent for Kleiber’s law was a matter of dispute for many
decades. It is still contested by a diminishing number as being 2/3 rather
than the more widely accepted 3/4.
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Homeostasis (see Problem # 64, Section 8.1, p. 441)
The nutrient content of a consumer can range from reflecting the nutrient
content of its food to being constant. A model for homeostatic regulation
is provided in Sterner and Elser (2002). It relates a consumer’s nutrient
content (denoted by y) to its food’s nutrient content (denoted by x) as

dy
dx =

1
θ

y
x

where θ ≥ 1 is a constant.
Integrating, we find that y = C x1/θ for some positive constant C.
Absence of homeostasis means that the consumer reflects the food’s
nutrient content. This occurs when y = Cx and thus when θ = 1.
Strict homeostasis means that the nutrient content of the consumer is
independent of the nutrient content of the food; that is, y = C; this occurs
in the limit as θ −→ ∞.
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