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An explicit solution of a DE can inform us about long-term behavior.
What if it is hard to find the solutions?
We saw, for example, that a direction field gives us visual information
about the solutions of a first order DE.

E.g.: dN
dt = 0.2N

(
1 − N

10

)

Q.: What does the above direction field tell us
about the solutions of the DE?
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Equilibria of an Autonomous DE
We consider autonomous differential equations of the form

dy
dx = g(y)

where we will typically think of x as time.

Constant solutions form a special class of solutions of autonomous
differential equations. These solutions are called (point) equilibria.

Example For example
N1(t) = 0 and N2(t) = K

are constant solutions to the logistic equation dN
dt = rN

(
1 − N

K

)
.
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Finding Equilibria

If ŷ (read “y hat”) satisfies
g(ŷ) = 0

then ŷ is an equilibrium of the autonomous differential equation

dy
dx = g(y).

Basic Property
The basic property of equilibria is that if, initially (say, at x = 0),
y(0) = ŷ and ŷ is an equilibrium, then y(x) = ŷ for all x ≥ 0.

http://www.ms.uky.edu/~ma138 UK Math
Lecture 17 4 / 15



Stability of Equilibria
Of great interest is the stability of equilibria of a differential equation.
This is best explained by the example of a ball on a hill vs a ball in a valley:

a ball rests on top of a hill a ball rests at the bottom of a valley

In either case, the ball is in equilibrium because it does not move.

If we perturb the ball by a small amount (i.e., if we move it out of its
equilibrium slightly) the ball on the left will roll down the hill and not
return to the top, whereas the ball on the right will return to the bottom
of the valley.

The ball on the left is unstable and the ball on the right is stable.
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Stability for Equilibria of DE

Suppose that ŷ is an equilibrium of dy
dx = g(y); that is, g(ŷ) = 0.

We look at what happens to the solution when we start close to the
equilibrium; that is, we consider the solution of the DE when we move
away from the equilibrium by a small amount, called a small perturbation.

We say that ŷ is locally stable if the solution returns to the equilibrium ŷ
after a small perturbation;

We say that ŷ is unstable if the solution does not return to the
equilibrium ŷ after a small perturbation.

We will now discuss an analytical and a graphical method for analyzing
stability of equilibria.
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Analytical Approach to Stability

Stability Criterion

Consider the differential equation dy
dx = g(y) where g(y) is a

differentiable function.

Assume that ŷ is an equilibrium; that is, g(ŷ) = 0.

Then
ŷ is locally stable if g′(ŷ) < 0;
ŷ is unstable if g′(ŷ) > 0.

Note:
g′(ŷ) is called an eigenvalue; it is the slope of the tg. line of g(y) at ŷ.
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Example 1
Find the equilibria of this differential equation and discuss their stability
using the analytical approach (≡ stability criterion)

dy
dx = 2 − y.
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Example 2
Find the equilibria of this differential equation and discuss their stability
using the analytical approach (≡ stability criterion)

dy
dx = y(2 − y).

Note:
dy
dx

= y(2 − y) = 2y
(

1 −
y
2

)
is a logistic equation with r = K = 2.
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Example 3
Find the equilibria of this differential equation and discuss their stability
using the analytical approach (≡ stability criterion)

dy
dx = y2 − 4.
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Example 4 (Problem # 5, Exam 2, Spring ’13)
Suppose that a fish population evolves according to the logistic equation
and that fish are harvested at a rate proportional to the population size.
That is,

dN
dt = g(N) = 3N

(
1 − N

6, 000

)
− 0.5N.

(a) Find all equilibria N̂ of the given differential equation.
(b) Use the eigenvalue approach, that is compute g′(N̂), to analyze the

stability of the equilibria found in (a).
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Example 5
Consider the DE dy

dx = g(y) = y(y + 2)(2 − y).
(a) Find the equilibria ŷ of this differential equation.
(b) Compute the eigenvalues associated with each equilibrium, that is

compute g′(ŷ), and discuss the stability of each equilibrium.
(c) Using the information found in (a) and (b), which of the following

phase portraits matches the given differential equation?
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Allee Effect (Problem # 93, Section 8.2, p. 454)
A sexually reproducing species may experience a disproportionately low
recruitment rate when the population density falls below a certain level,
due to lack of suitable mates. This phenomenon is called an Allee effect
(Allee, 1931).
A simple extension of the logistic equation incorporates the effect.
We denote the size of a population at time t by N = N(t); then we have

dN
dt = rN(N − a)

(
1 − N

K

)
where r, a, and K are positive constants. We assume that 0 < a < K.
As in the logistic equation, K denotes the carrying capacity.
The constant a is a threshold population size below which the
recruitment rate is negative, meaning that the population will shrink and
ultimately go to extinction. Analyze the equilibria N̂ = 0, a,K.
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Phase portrait of
dN
dt

= 0.2N(N − 4)
(

1 −
N
10

)

equilibria: N̂ = 0, 4, 10
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Example 6 (Bonus Problem (b), Exam 2, Spring ’14)
A tumor can be modeled as a spherical collection of cells and that it
acquires resources for growth only through its surface area. All cells in a
tumor are also subject to a constant per capita death rate. With these
assumptions, the dynamics of tumor mass M (in grams) is therefore
modeled by the differential equation

dM
dt = κM 2/3 − µM,

where κ and µ are positive constants. The first term represents tumor
growth via nutrients entering through the surface; the second term
represents a constant per capita death rate.
Suppose κ = 1, that is the dynamics of tumor mass is modeled as

dM
dt = M 2/3 − µM.

Which value does the tumor mass approach as time t → ∞? Explain.
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