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Vector-valued functions

m So far, we have considered only real-valued functions f: R — R.

m We now extend our discussion to functions whose the range is a
subset of R™ — that is, f: R” — R™.

m Such functions are vector-valued functions, since they take on values
that are represented by vectors:

fl(Xl,XQ,...,X,,)
fo(x1, X2, ..., X
f:R" — R™ (X1, X2, .« .y Xp) —> ba e, xa)
| (X1, X2,y Xn) |
m Here, each function fi(xi,...,xp) is a real-valued function:
fi:R" — R (X1, X2, .+, Xn) — fi(X1, X2, .+, Xn)-
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We will encounter vector-valued functions where n = m = 2 in Chapter 11.

Example

As an example, consider a community consisting of two species.

Let v and v denote the respective densities of the species and f{u, v) and
g(u, v) the per capita growth rates of the species as functions of the
densities v and v.

We can then write this relationship as a map

h:R?> — R? (u,v)&—>[f(u7v)].
g(u,v)
. a—fpv
E.g., in the Lotka-Volterra predator-prey model: (u, v) — [ 5 ] ,
yu—

where «, 3,7, and § are constants.
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Review

m We have defined earlier the linearization at a point (xp, yo) of a
real-valued function f: R? — R; namely,

8)‘()(07 }’O)

0.90) 5 )+ 000N,

By — ¥0).

LAx,y) = fixo, y0) +

m We can write the above equation in matrix notation as

LAx, y) = f(x0, y0) + 0f(x0, Y0) 8f(x0,y0)] ‘ [ X — X0 ] .

Ox Oy Y=Y

1X2 matrix 2x1 matrix
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R
Our Goal

m Our task is to define the linearization at a point (xp, yo) of
vector-valued functions whose domain and range are R2; that is,

h:R? — R? (x,y)Hlf(X’y)].
&(x.y)
m To do so, we linearize at the point (xp, yo) each component of h(x, y)
Of(xo, 0f(xo,
Lix3) = o) + TR0 4 Iy
Jg(x0, y0) Jg(x0, Yo)

Lg(x, y) = g(x0, Y0) + Ee (X—Xo)+T(y—yo)~

m We define the linearization of h(x, y) at the point (xo, yo) to be the
vector-valued function L(x, y)

L(xy) = [ LA, y) ] ‘

Lg(X> y)
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The Jacobi (or Derivative) Matrix

We can rewrite the linearization L(x,y) at a point (xp, yo) of the

vector-valued functions h(x, y) in the following matrix form

h(x,y) ~ L(x y)

| LAxy) 1
L Lg(va)
r Ofixg, Oflxo,
fixo, o) + w(X— xo) + f();)yyo)(y— ¥0)
Og(xo, 0g(xo,
| st 30) + 2L g OO,
_ 0f(x0,¥0)  9flx0, Y0)
fx0, yo) Ox Jy ) (x—x0)
g(xo’yo) ag(X07y0) 8g(XO',yO) (y_ }’0)
S — Ox Ay
h(x0,y0)

(Dh)(x0,y0)

(Dh)(xo0, ¥0) is @ 2 x 2 matrix called the Jacobi matrix of h at (xo, yo).
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Example 1

(Problem #10, Exam 3, Spring 2012)

Consider the vector valued function h:R?> — R?  given by

Xy =y ]

hixy) = { 23 +y

(a) Compute the Jacobi matrix (Dh)(x,y) and evaluate it at the point

(1,2).

(b) Find the linear approximation of h(x, y) at the point (1,2).
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Example 2

(Problem #46, Section 10.4, p. 599)

Find a linear approximation to

m]

f(X,y)Z[ e y?

at (1,2). Use your result to find an approximation for f(1.05,2.05).
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Example 3

(Example # 9, Section 10.4, p. 597)

Consider the function f:R? — R?  (x,y) [ ux.) ] . with

u(x,y) = ye"

v(x, y)

x and v(x, y) = sinx + cos y.

Find the linear approximation to f(x, y) at (0,0).

Compare f(0.1, —0.1) with its linear approximation.
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e
The General Case [ A, x) ]

..,x,,)J

m Consider the function f: R" — R™, say f(xq,...,x,) =
fm(Xla

where f; : R" — R, are m real-valued functions of n variables.

m The Jacobi matrix of fis an m x n matrix of the form

oh A
8X1 (9X,7
(Df)(x1,. ... xn) =
Oy O
Oxq O0xp
m The linearization of f about the point (xj,...,x}) is then
A, . xE) X1 — X}
L(Xl,...,X,,): +(Df)(XTv7X:)
fm(Xfs .-, x5) Xp — X,
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