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Compartment Models

m Compartment models describe flow between compartments, such as
nutrient flow between lakes or the flow of a radioactive tracer between
different parts of an organism.

m In the simplest situations, the resulting model is a system of linear
differential equations.
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Example 1

(Online Homework #4)

Consider two brine tanks connected as <<
shown in the figure. Pure water flows into

the top of Tank 1 at a rate of 15 L/min.

The brine solution is pumped from Tank 1 — Tank 2
into Tank 2 at a rate of 40 L/min, and from | Tank 1

Tank 2 into Tank 1 at a rate of 25 L/min. —

T Y

A brine solution flows out the bottom of

Tank 2 at a rate of 15 L/min. \%/
Suppose there are 100 L of brine in Tank 1 and 120 L of brine in Tank 2.
Let x be the amount of salt, in kilograms, in Tank 1 after t minutes, and y

the amount of salt, in kilograms, in Tank 2 after t minutes.

Assume that each tank is mixed perfectly. Set up a system of first-order
differential equations that models this situation.
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Example 1: The direction field and the graph of two particular solutions

of the system of linear DEs are plotted below:
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Example 2| (Online Homework #5)

Consider two brine tanks connected as shown in
the figure. The brine solution is pumped from
Tank 1 into Tank 2 at a rate of 10 L/min, and
from Tank 2 into Tank 1 at a rate of 10 L/min.
Suppose there are 50 L of brine in Tank 1 and
25 L of brine in Tank 2.

Tank 1

h
—

Tank 2

Let x be the amount of salt, in kilograms, in Tank 1 after t minutes have

elapsed, and let y the amount of salt, in kilograms, in Tank 2 after t

minutes have elapsed.

Assume that each tank is mixed perfectly.

If x(0) =7 kg and y(0) = 8 kg, find the amount of salt in each tank after

t minutes.

As t — oo, how much salt is in each tank?
http://www.ms.uky.edu/~mal38
Lecture 40

5/9



tion field and the graph of the two solutions of the

Irec

The di

Example 2

ial conditions are plotted below
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system of linear DEs with given
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Higher Order Differential Equations
m (Ordinary) differential equations (=ODEs) arise naturally in many
different contexts throughout mathematics and science (social and

natural). Indeed, the most accurate way of describing changes
mathematically uses differentials and derivatives.
m So far we have looked only to first order differential equations.
m A simple example is Newton's Second Law of Motion, which is

x(t
described by the differential equation m c;;(z ) = F(x(t))

(m is the constant mass of a particle subject to a force F, which

depends on the position x(t) of the particle at time t).
m Let F be a given function of x, y, and derivatives of y. Then an
equation of the form

S — F<X,y,)/, . .y<n71))

is called an explicit ordinary differential equation of order n.
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Reduction of to a First-Order System

m Differential equations can usually be solved more easily if the order of
the equation can be reduced.
m Any differential equation of order n,

f) = F (s ooy f770)

can be written as a system of n first-order differential equations by
defining a new family of unknown functions

yi= Y

fori=1,2,...,n.
m Note that these new functions are related by

}/]_:}/2 }/2:)/3 }/n_lz}/n }/11:F(X7y17}/27"'7yn)‘

m Your solution is then the function y; = y.
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- _____________________________________
Example 3| (Online Homework #2)

Solve the following differential equation:

Y' =3y —10y =0
with the initial conditions y=1, y =10 at x=0.
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