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Analytical Approach
We consider a system of differential equations of the form

dx1
dt = f1(x1, x2)

dx2
dt = f2(x1, x2)

where we assume that the functions fi(x) : R2 −→ R do not explicitly
depend on t. We also no longer assume that the fi’s are linear.
Such a system is called autonomous.

Using vector notation, we can write the system as dx
dt = f(x)

where x = x(t) = (x1(t), x2(t)) and f(x) = (f1(x), f2(x)).
An equilibrium or critical point, x̂, of the above nonlinear system
satisfies f(x̂) = 0.
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Example 1
Identify all the equilibrium points of the following nonlinear system

dx
dt = x(5 − x − 6y)

dy
dt = y(1 − 5x)

x

y
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Suppose that x̂ is a point equilibrium. Then, as in the case of one
nonlinear equation (≡Section 8.2), we look at what happens to a
small perturbation of x̂.
We perturb x̂; that is, we look at how x̂ + z changes under the
dynamics described by our nonlinear system:

d
dt(x̂ + z) = d

dtz = f(x̂ + z)

The linearization of f(2) about x = x̂ is

L(2) = f(x̂) + Df(x̂)(2− x̂) = Df(x̂)(2− x̂)

where we used the fact that f(x̂) = 0.
The matrix Df(x̂) is the Jacobi matrix of f(x) evaluated at x̂.
If we approximate f(x̂+ z) by its linearization L(x̂+ z) = Df(x̂)z, then

dz
dt = Df(x̂) z

is the linear approximation of the dynamics of the perturbation z.
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We now have a system of linear differential equations that is a good
approximation, provided that z is sufficiently close to 0.
When we linearize a nonlinear system about an equilibrium, the
matrix A is the Jacobi matrix evaluated at the equilibrium.
To classify the equilibrium we can use the same classification scheme
as in the linear case. We need to exclude, though, the following cases:

(i) at least one eigenvalue is equal to 0,
(ii) the two eigenvalues are purely imaginary, and
(iii) the two eigenvalues are identical.
An equilibrium point as described above is often called hyperbolic
(this is an unfortunate name—it sounds like it should mean“saddle
point”—but it has become standard!).
The extension from the linear case to the nonlinear case is possible
because of the following result:
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Hartman-Grobman Theorem

Hartman-Grobman Theorem

The local phase portrait near a hyperbolic equilibrium point is
“topologically equivalent1” to the phase portrait of the linearization.

In particular, the stability type of the equilibrium point is faithfully
captured by the linearization.

1Intuitively, two phase portraits are topologically equivalent if one is a distorted
version of the other: bending and wrapping are allowed, but not ripping, so closed orbits
must remain closed, trajectories connecting saddle points must not be broken, etc.
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That is...
dx
dt = f(x) and dz

dt = Df(x̂)z

behave similarly for x = x̂ + z with z close to 0.
More precisely, we find the same classification scheme as in the linear case:

The equilibrium x̂ is a node if both eigenvalues of Df(x̂) are real,
distinct, nonzero, and of the same sign; x̂ is locally stable if the
eigenvalues are negative and unstable if the eigenvalues are positive.
The equilibrium x̂ is a saddle point if both eigenvalues are real and
nonzero but have opposite signs. A saddle point is unstable.
The equilibrium x̂ is a spiral if both eigenvalues are complex
conjugates with nonzero real parts. The spiral is locally stable if the
real parts of the eigenvalues are negative and unstable if the real parts
of the eigenvalues are positive.
In the exceptional cases, we cannot determine the stability by
linearization.
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The stability properties of a hyperbolic equilibrium x̂ can be summarized
graphically in terms of the determinant and the trace of the Jacobi matrix
A = Df(x̂) in the trace-det plane:

det(A)

trace(A)

∆ = 0
∆ = 0

stable nodes

stable spirals

unstable spirals

unstable nodes

saddle points
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Example 1 (cont’d)
Linearize the nonlinear system of differential equations

dx
dt = x(5 − x − 6y)

dy
dt = y(1 − 5x)

at each equilibrium point
(x̂1, ŷ1) = (0, 0);
(x̂2, ŷ2) = (5, 0);
(x̂3, ŷ3) = (0.2, 0.8).

Classify the type of each equilibrium point.
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Example 2 (Problem #10, Exam #4, Spring 2013)
Suppose a habitat is divided up into patches and each patch can be
occupied by at most one individual. If two species A and B live in this
habitat, the growth of the population of A is controlled by the internal
dynamics of the population growth of A and the interactions between A
and B. The situation for B is similar.
Suppose the members of species A are able to outcompete members of
species B, that is, the members of A are able to invade patches that are
occupied by species B and displace the resident. If p1 is the fraction of the
sites occupied by A and p2 is the fraction of the sites occupied by B, this
situation is described by the differential equations
dp1
dt = c1p1(1−p1)−m1p1

dp2
dt = c2p2(1−p1−p2)−m2p2−c1p1p2

where c1, c2,m1, and m2 are the colonization and mortality rates of species
A and B, respectively.
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Example 2 (cont’d)
Suppose c1 = 2, c2 = 10, m1 = 1, and m2 = 2. Hence, after some algebra,
the above system of nonlinear differential equations can be written as

dp1
dt = p1 (1 − 2p1)

dp2
dt = p2 (8 − 12p1 − 10p2)

(a) There is only one equilibrium point
(p̂1, p̂2) where both species are present.
Identify that point and linearize the given
system of differential equations at that
point. Classify the type of equilibrium. p1

p2

Plot here the nullclines and
the nontrivial equilibrium point
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Example 2 (cont’d)
(b) Choose the direction field that describes the system of nonlinear

differential equations considered in (a).

http://www.ms.uky.edu/~ma138 UK Math
Lecture 41 12 / 13



On the Exception to the Hartman-Grobman Thm
The following nonlinear systems of DEs

dx
dt = −y+x(x2 + y2)

dy
dt = x+y(x2 + y2)


dx
dt = −y−x(x2 + y2)

dy
dt = x−y(x2 + y2)

have rather different phase portraits (see below). However, they have the
same linearization at the equilibrium (0, 0), with eigenvalues ±i.
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