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Graphical Approach for 2 × 2 Systems
We consider a system of two autonomous DEs of the form

dx1
dt = f1(x1, x2)

dx2
dt = f2(x1, x2)

i.e., we assume that the functions fi(x) : R2 −→ R do not explicitly
depend on t.
Using vector notation, we can write the system as dx

dt = f(x)
where x = x(t) = (x1(t), x2(t)) and f(x) = (f1(x), f2(x)).
The curves

f1(x1, x2) = 0 f2(x1, x2) = 0.
are called zero isoclines or null clines, and they represent the points
in the x1x2-plane where the growth rates of the respective quantities
are equal to zero.http://www.ms.uky.edu/~ma138 UK Math
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Let us assume that x1 and x2 are nonnegative;
this restricts the discussion to the first quadrant
of the x1x2-plane. The two curves in the picture
on the right divide the first quadrant into four
regions, and we label each region according to
whether dxi/dt (that is, fi) is positive or negative.
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The point where both null clines in the picture intersect is a point equilibrium or
critical point, which we call x̂. We can use the graph to determine the signs of
the entries in the Jacobi matrix

Df(x̂) =
[

a11 a12

a21 a22

]
where aij =

∂fi
∂xj

(x̂).

Clearly, the entry a11 is the effect of a change in f1 in the x1-direction when we
keep x2 fixed. To determine the sign of a11, follow the horizontal arrow in the
picture: The arrow goes from a region where f1 is positive to a region where f1 is
negative, implying that f1 is decreasing and hence a11 < 0.
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The signs of the other three entries are found similarly, and we obtain

Df(x̂) =
[

− +

− −

]
.

Thus, the trace of Df(x̂) is negative and the determinant of Df(x̂) is
positive.
We conclude that both eigenvalues have negative real parts and, therefore,
that the equilibrium is locally stable.
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Example 1 (Problem #9, Exam 4, Spring 2012)
Consider the system of autonomous DEs

dx
dt = f(x, y)

dy
dt = g(x, y)

The zero isoclines (or nullclines) for this system
of DEs are drawn in the picture on the side.
Assume that both functions f and g are positive in the region containing
the origin and that f and g change sign when crossing their zero isoclines.
Use a graphical approach to find the sign structure of the Jacobi matrix at
the equilibrium point (3, 2). Classify (if you can) the nature of the
equilibrium point (3, 2). If not, say why.
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Example 2 (Example #4, Section 11.3, p. 695)
Use the graphical approach to analyze the equilibrium (3,2) of

dx1
dt = 5 − x1 − x1x2 + 2x2

dx2
dt = x1x2 − 3x2
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Remark
This simple graphical approach does not always give us the signs of the
real parts of the eigenvalues, as illustrated in the following example:
Suppose that we arrive at the Jacobi matrix in which the signs of the
entries are

Df(x̂) =
[

+ −
− −

]
.

The trace may now be positive or negative. Therefore, we cannot conclude
anything about the eigenvalues. In this case, we would have to compute
the eigenvalues or the trace and the determinant explicitly and cannot rely
on the signs alone.
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