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B 11.3 Nonlinear Autonomous Systems: Theory

In this section, we will develop some of the theory needed to analyze systems of
differential equations of the form

dx1

3 Ji(xy, x2, ..., Xn)

dX2

— = flx, ) (11.47)
dx,

7 = fu(x1,%2, ..., Xn)

where f; : R" — R,fori =1, 2, ..., n. We assume that the functions f;,i = 1,2,...,
n, do not explicitly depend on ¢; the system (11.47) is therefore called autonomous.
We no longer assume that the functions f; are linear, as in Section 11.1. Using vector
notation, we can write the system (11.47) in the form

dx £(x)

—_— X

dt
where x = [x1, X2, ..., x,|’, and f(x) is a vector-valued function f : R* — R” with
components f;(xy, Xp,...,x,) : R" — R,i = 1,2, ..., n. The function f(x) defines

a direction field, just as in the linear case.

Unless the functions f; are linear, it is typically not possible to find explicit
solutions of systems of differential equations. If we want to solve such systems, we
frequently must use numerical methods. Instead of trying to find solutions, we will
focus on point equilibria and their stability, just as in Section 8.2.

The definition of a point equilibrium (as given in Section 8.2) must be extended
to systems of the form (11.47). We say that a point

i: (-fl'er:"'aiH)
is a point equilibrium (or simply equilibrium) of (11.47) if
f(x) =0

An equilibrium is also called a critical point. As in the linear case, this is a point in the
direction field at which the direction vector has length 0, implying that if we start a
system of differential equations at an equilibrium point, it will stay there for all later
times.

As in the linear case, a solution might not return to an equilibrium after a small
perturbation; this possibility is addressed by the stability of the equilibrium. The
theory of stability for systems of nonlinear autonomous differential equations is
parallel to that in Section 8.2; there is both an analytical and graphical approach that
reduces to the theory set forth there when there is a single differential equation. We
will restrict our discussion to systems of two equations in two variables. (The concepts
are the same when we have more than two equations, but the calculations become
more involved.)

B 11.3.1 Analytical Approach

A Single Autonomous Differential Equation
RETITIEEN Find all equilibria of
— =x(1-x) (11.48)

and analyze their stability.
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We developed the theory for single autonomous differential equations in Section 8.2.
To find equilibria, we set

1l —x)=10

which yields

Xi=0 and Xe=:1

To analyze the stability of these equilibria, we linearize the differential equation
(11.48) about each equilibrium and compute the corresponding eigenvalue. We set

fx)=x(1—-x)

Then
ffx)=1—-2x

The eigenvalue associated with the equilibrium x; = 0 is
M=f0=1>0

which implies that x; = 0 is unstable.
The eigenvalue associated with the equilibrium X, = 1 is

A=f1=-1<0

which implies that x, = 1 is locally stable. ]

The eigenvalue corresponding to an equilibrium of the differential equation

dx

— = f(x 11.49

== f® (11.49)
is the slope of the function f(x) at the equilibrium value. The reason for this is
discussed in detail in Section 8.2; we repeat the basic argument here. Suppose that x
is an equilibrium of (11.49); that is, f(x) = 0. If we perturb x slightly (i.e., if we look
at X + z for small |z|), we can find out what happens to X + z by examining

dx _d . _dz
—_— = — x — | —
dr _dro YT g

Since the perturbation is small, we can linearize
FE+)=fR)+ fRE+z—-%) = f'(X)z
[In the last step, we used the fact that f(x) = 0.] We find that

dz LA
E f(x)z

which has the approximate solution
z(t) ~ z(0)e™  with A = f/(%)

Therefore, if f'(x) < 0,then z(t) — 0ast — oo and, hence, x(t) = x +z(¢) — X as
t — o0;thatis, the solution will return to the equilibrium X after a small perturbation.
In this case, X is locally stable. If f'(x¥) > 0, then z(¢) will not go to 0, which implies
that x is unstable. The linearization of f(x) thus tells us whether an equilibrium is
locally stable or unstable. We will use linearization as well to determine the stability
of equilibria of systems of differential equations.
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Systems of Two Differential Equations We consider differential equations of the
form

P fin, ) (11.50)
p— X . X "
pr 1(X1, X2
de
= : 11.51
a7 Jfa(x1, x2) ( )
or, in vector notation,
9 ) (11.52)
—_— X ¥
dt

where x = x(f) = (x1(7), x2(¢)) and f(x) is a vector-valued function f(x) = (f;(x),
f>(x)) with f;(x) : R? — R. An equilibrium or critical point, %, of (11.52) satisfies

f&) = 0

Suppose that X is a point equilibrium. Then, as in the case of one nonlinear equation,
we look at what happens to a small perturbation of x. We perturb Xx; that is, we look
at how X + z changes under the dynamics described by (11.52):

d d

— (X = —z7 =f(X

7 (x+2) dtz (x+2)
The linearization of f(x) about x = X is

£(&) + DE®)z = DER)z

where we used the fact that f(X) = 0. The matrix Df(X) is the Jacobi matrix evaluated
at X. If we approximate f(X + z) by its linearization Df(X), then

— = DI(R)z (11.53)

is the linear approximation of the dynamics of the perturbation z.

We now have a system of linear differential equations that is a good
approximation, provided that z is sufficiently close to 0. In Section 11.1, we learned
how to analyze linear systems. We saw that eigenvalues of the matrix Df(X) allowed us
to determine the nature of the equilibrium. We will use the same approach here, but
we emphasize that this is now a local analysis, just as in the case of a single differential
equation, since we know that the linearization (11.53) is a good approximation only
as long as we are sufficiently close to the point about which we linearized.

We return to our classification scheme for the linear case,

dx_*A
dar = X

where x(7) = (x1(¢), x»(¢)) and A is a 2 x 2 matrix. We let

A =detA and T=1trA

When we linearize a nonlinear system about an equilibrium, the matrix A is the Jacobi
matrix evaluated at the equilibrium:

A = DE®)

We exclude the following cases: (i) A = 0 (when A = 0, at least one eigenvalue
isequal to 0), (i) r = 0 and A > 0 (when r = 0 and A > 0, the two eigenvalues
are purely imaginary), and (iii) 7> = 4A (when > = 4A, the two eigenvalues are
identical). Except in these three cases, we can use the same classification scheme as
in the linear case (Figure 11.35).
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Figure 11.35 The stability behavior of a system of two
autonomous equations.

The extension from the linear case is possible because the linearized vector field
and the original vector field are geometrically similar close to an equilibrium point.
(After all, that is the idea behind linearization.) This result is known as the Hartman—
Grobman theorem, which says that as long as Df(X) has no zero or purely imaginary
eigenvalues, then the linearized and the original vector fields are similar close to the
equilibrium. That is,

dx £(x) d dz DE®)
— = 1(x an —i— X)Z
dt dt
behave similarly for x = X + z with z close to 0.
We find the same classification scheme as in the linear case:

e The equilibrium X is a node if both eigenvalues of Df(X) are real, distinct,
nonzero, and of the same sign. The node is locally stable if the eigenvalues are
negative and unstable if the eigenvalues are positive.

e The equilibrium X is a saddle point if both eigenvalues are real and nonzero but
have opposite signs. A saddle point is unstable.

e The equilibrium X is a spiral if both eigenvalues are complex conjugates with
nonzero real parts. The spiral is locally stable if the real parts of the eigenvalues
are negative and unstable if the real parts of the eigenvalues are positive.

When the two eigenvalues are purely imaginary, we cannot determine the
stability by linearization.

Consider
dx; 2
= = X1 — 2X] — 2x1x2
(11.54)
W gy — 522 7
— =4x; — 5x; — Tx1x
dr 2 2 1%2
(a) Find all equilibria of (11.54) and (b) analyze their stability.
(a) To find equilibria, we set the right-hand side of (11.54) equal to 0:
X1 — 2x; —2x1%, =0 (11.55)
4%y — 5x5 — Txyxy =0 (11.56)

Factoring out x; in the first equation and x; in the second yields
x1(1—2x1 —2x3) =0 and X248 —5x, —T7x1) =0

That is,
xi =0 or 2x1+2x, =1
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and
X =0 or Ix1+5x, =4

Combining the different solutions, we get the following four cases:
(i) x;7=0andx; =0
(i) x; =0and 7x; + 5x, = 4
(iii) x, =0and 2x; +2x, =1
(iv) 2x1 +2x; =1and 7x; + 5x, = 4
First, we will compute the equilibria in these four cases:
Case (i) There is nothing to compute; the equilibrium is (X1, X;) = (0, 0).

Case (ii) To find the equilibrium, we must solve the system

X1 = 0
7X1 + sz =4
which has the solutions
4
x1 =0 and X5 = 3

Hence, the equilibrium is (X1, x;) = (0, %).

Case (iii) To find the equilibrium, we must solve the system

Xy = 0
Q,X1 + Q,XZ |
which has the solutions
1
X, =0 and X = 7

Hence, the equilibrium is (X1, x;) = (%, 0).

Case (iv) To find the equilibrium, we must solve the system

Q.X1 —l—2x2 =
7x1 +5x2 =4

We use the standard elimination method: Leaving the first equation alone,
changing the second by multiplying the first by 7 and the second by 2, and
subtracting the second equation from the first, we find that this system is
equivalent to

2).’1 + 2x2 =1
4x2 = —1

which has the solutions

I
X3 = ~2 and X, =

—

1___3
2 P4

Hence, the equilibrium is (X1, X,) = (%, —}1)-

We can illustrate all equilibria in the direction field of (11.54), which is displayed
in Figure 11.36. The equilibria are shown as dots.

(b) To analyze the stability of the equilibria, we compute the Jacobi matrix

i
Df — E}xl Bx?
afr 0f2

ax;  axp



624 Chapter 11 m Systems of Differential Equations

X2 A

I ....... ‘.T ....... S . SR BT ot magi e iy e g ena e ; y FERe
A R S N : ¥ : ;
£ 4 4 4 4 4 4 WV A
LI T S Y “f <
Y ot 4 4 4 4
LI SR S T SR S 2 ¥
£ 4 &+ 4+ 4 4 a4l * l/

05 ...... '5 ...... e Nl D s ‘ ............ fochgs e ‘:; .......
LI A N B L ‘ -
X X ok o& 4 4 i .
NOR xR 4 4 =
L O S L -
e % v W i

0 e R
Yor e ok ® ¥
A A S S
oo
P T : o
£ 6 4 b 4 4 4 A A A % o

—0.5 | RS G GRS SRR ; . bt

=05 X,

Figure 11.36 The direction field of (11.54) together with the
equilibria.

With
J1(x1, x3) = x; — 2xi2 — 2Xx1%> and fa(x1, x3) = 4xp — ng — Tx1x;

we find that
Df(x1, x2) = |: ~Tes 4 —10x; — Txy ]

We will now go through the four cases and analyze each equilibrium:

Case (i) The equilibrium is the point (0, 0). The Jacobi matrix at (0, 0) is

Df(0,0):[(l) 2]

Since this matrix is in diagonal form, the eigenvalues are the diagonal elements,
and we find that A; = 1 and A, = 4. Because both eigenvalues are positive, the
equilibrium is unstable. Using the same classification as in the linear case, we say

that (0, 0) is an unstable node.
The linearization of the direction field about (0, 0) is displayed in Figure 11.37,

where we show the direction field of

dx 1 0

o 4|
Figure 11.37 confirms that (0, 0) is an unstable node (or source). If you now
compare Figure 11.37 with the direction field of (11.54) shown in Figure 11.36,

i L v

Figure 11.37 The linearization of the direction field about
(0, 0).
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you will find that the linearized direction field and the direction field of (11.54)
close to the equilibrium (0, 0) are similar.

Case (i) The equilibrium is the point (0, §). The Jacobi matrix at (0, %) is

8 3
Df(o’g): 1_283 408 =| = Z
5 5
Since this matrix is in lower triangular form, the eigenvalues are the diagonal
elements, and we find that the eigenvalues of Df(0, ;) are Ay = —g and A, = —4.
Because both eigenvalues are negative, (0, g) is locally stable. Using the same

classification as in the linear case, we say that (0, g) is a stable node.

The linearization of the direction field about (0, ‘51) is displayed in Figure 11.38,

which confirms that (0, ;) is a stable node (or sink). If you compare Figure 11.38

with the direction field of (11.54) shown in Figure 11.36, you will find that the
linearized direction field and the direction field of (11.54) close to the equilibrium

4 -
(0, 3) are similar.

- & =

¥
r —r

e
.

Figure 11.38 The linearization of the direction field about
©, ).

Case (iii) The equilibrium is the point (%, 0). The Jacobi matrix at (%, 0) is

Dt 1 0 1—2 -1 -1

22°)=1 0o 4-I1|T[ o 3
Since this matrix is in upper triangular form, the eigenvalues are simply the
diagonal elements, and we find that the eigenvalues of Df(%, 0) are A1 = —1 and

Ay = % Because one eigenvalue is positive and the other is negative, (%, 0) is

unstable. Using the same classification as in the linear case, we say that (%, 0)isa
saddle point.

The linearization of the direction field about ( % , 0) 1s displayed in Figure 11.39,
which confirms that (%, 0) is a saddle point. If you compare Figure 11.39 with the
direction field of (11.54) shown in Figure 11.36, you will find that the linearized
direction field and the direction field of (11.54) close to the equilibrium (%, 0) are
similar.

Case (iv) The Jacobi matrix at the equilibrium (%, —%) 18

1 3
4’ 4 % 440 _2

EoN IS B SRR

Bl

44
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DA

Figure 11.39 The linearization of the direction field about
(3. 0).

To find the eigenvalues, we must solve

Evaluating the determinant on the left-hand side and simplifying yields

()G O

A2+_3k 5}L 154_21__0
2} 4 8 8
ﬂ+1x+3—0

4" 4

Solving this quadratic equation, we find that

1 1
it /L3

A= )

1 1
= AT = —— + =i, [47
8 8
That is,
| [ i 1 1,
)Ll =—§+"8'I\/4T7 and )\.gz—g— gl 47

The eigenvalues are complex conjugates with negative real parts. Thus, (%, —%) is

locally stable, and we expect the solutions to spiral into the equilibrium when we
start close to the equilibrium.

The linearization of the direction field about (%, — }—1) is displayed in Figure

11.40, which confirms that (%, —%) is a stable spiral. If you compare Figure 11.40

with the direction field of (11.54) shown in Figure 11.36, you will find that the
linearized direction field and the direction field of (11.54) close to the equilibrium

(Z—’, —%) are similar. o
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=Y

Figure 11.40 The linearization of the direction field about
s
2y
14

B 11.3.2 Graphical Approach for 2x 2 Systems

In this subsection, we will discuss a graphical approach to systems of two autonomous
differential equations. Suppose that

dx1

o fi(x1, x2)

dxz

T f2(x1, x2)

which in vector form is
dx

7 =Hx)

The curves

Sfi(x1, x2) =0

falx1,x2) =0
are called zero isoclines or null clines, and they represent the points in the x;—x; plane
where the growth rates of the respective quantities are equal to zero. This situation
is illustrated in Figure 11.41 for a particular choice of fi; and f,. Let’s assume that x;
and x, are nonnegative; this restricts the discussion to the first quadrant of the x;—x;
plane. The two curves in Figure 11.41 divide the first quadrant into four regions, and
we label each region according to whether dx;/dt is positive or negative. Without
specifying the signs of f; and f, any further, we make assumptions about the signs
of dxi/dt and dx;/dt as indicated in Figure 11.41.

The point where both null clines in Figure 11.41 intersect is a point equilibrium

or critical point, which we call X. We can use the graph to determine the signs of the
entries in the Jacobi matrix

Df(i) — |:£111 ﬂlz]

dzy dx

) i 1 . : :
wherea;; = % (x). Clearly, the entrya;; = % is the effect of a change in f; in the x;-
J

direction when we keep x; fixed. To determine the sign of a;, follow the horizontal
arrow in the figure: The arrow goes from a region where f; is positive to a region

: B : . ; 1 ,a
where f; is negative, implying that f; is decreasing and hence %(x) = a;; < 0.

We conclude that the sign of a;; in Df(X) is negative, which we indicate in the Jacobi
matrix by a minus sign in place of a;;:

DEX) = [ Y ]

dz dax
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1A
dX1
?=0
>0
H<0
fi=0 fi<0
£>0 £<0
fi<0
£L>0 v _
dt

Figure 11.41 Graphical approach: zero isoclines.

: : 3f1 ,~ 5. .4
Next, we determine the sign of a;p = %(x). This time, we want to know how f;

changes at the equilibrium X when we move in the x,-direction and keep x; fixed.
This is the direction of the vertical arrow through the equilibrium point. Since the
arrow goes from a region where f; is negative to a region where f; is positive, fi

- 3 . - a ~
increases in the direction of x, and, therefore, a;, = a—g (x) > 0.
The signs of the other two entries are found similarly, and we obtain

Di‘(i):[: f]

Thus, the trace of Df(X) is negative and the determinant of Df(X) is positive. Using the
criterion stated in Subsection 9.4.2, we conclude that both eigenvalues have negative
real parts and, therefore, that the equilibrium is locally stable.

Use the graphical approach to analyze the equilibrium (3, 2) of

dxl
—:S—X1—JC1JC2+2JC2
dt

dx;g 3

— = X1X2 — IX

dt 142 2

First, note that (3, 2) is indeed an equilibrium of this system. Now, the zero isoclines
satisfy

dx]_ ; 5 — X1
—— =0, which holds for x, =
d?f X1 — 2
and
dx?_

I =0, whichholdsforx; =0orx; =3

The zero isoclines in the x1—x; plane are drawn in Figure 11.42. The equilibrium (3, 2)

i ; : ; : ; S5—x ;
is the point of intersection of the zero isoclines x; = 3 and x, = ﬁ The signs of
=

dx1

d X2
dr dr

and -

are indicated in the figure as well. We claim that

Df(X) = [:L B]

Here is why: To find the sign of a1 = g;, we need to determine how dx; /dt changes

as we cross the zero isocline of x; in the x;-direction. We see from the graph that
dx; /dt changes from positive to negative when we follow the horizontal arrow while
crossing the zero isocline of x;. Therefore, a;; is negative. To see why a,; = 0, follow
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Figure 11.42 The zero isoclines in the x;—x; plane.

the vertical arrow in the x,-direction. Since the vertical arrow is on the zero isocline of
X,, the sign of dx,/dt does not change as we cross the equilibrium in the x,-direction.
Therefore, a;; = 0. The signs of a;; and a,; follow from observing that if we cross
the zero isocline of x; in the x;-direction (the vertical arrow), then dx; /dt changes
from positive to negative, making a;; < 0. If we cross the zero isocline of x; in the
direction of x; (the horizontal arrow), we see that dx,/dt changes from negative to
positive, making az; > 0.

To determine the stability of X, we look at the trace and the determinant. Since
the trace is negative and the determinant is positive, we conclude that the equilibrium
is locally stable. |

This simple graphical approach does not always give us the signs of the real parts
of the eigenvalues, as illustrated in the following example: Suppose that we arrive at
the Jacobi matrix in which the signs of the entries are

= =)

The trace may now be positive or negative. Therefore, we cannot conclude anything
about the eigenvalues. In this case, we would have to compute the eigenvalues or the
trace and the determinant explicitly and cannot rely on the signs alone.

Section 11.3 Problems

m11.3.1

In Problems 1-6, the point (0, 0) is always an equilibrium. Use the

In Problems 7-12, find all equilibria of each system of differential
equations and use the analytical approach to determine the stability
of each equilibrium.

analytical approach to investigate its stability. dx,
d d 7. — =—x14+2x;(1 —x1)
].. i:xl—ng—Fxlxz 2. it—xl—xz—l—xlz dr ! ! !
dt dt dx,
dx, i dx; 5 7y = —X2 + 5x(1 — x1 — x2)
—_— = — — = — X
dt MR dr 2T
dx ’ dxi 8 dx, _ +3x,(1 o)
3. E :xl—{—xl —~2x1x2+x2 4. E :3x1x2 — X1 +x2 * dt =—X X1 — X1 X2
dx
de de 2 _2 o 5 1 = -
5, e 6 M oy N 10. 2o )
. di = X1€ . d = —48In xq . di = aX = ) 1X2 . At = X1 — X1 X2
dx; dx; dx; dx;
— = 2xe" — = —xpe™! — =x(2 — — X — = 3x,(7 — 3x; —
dt 2€ dt X2€ dt 2( x7) 2 dt X ( X1 — X2)
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11 dx1 12 dx1
. — =X — X . — = XX — X
dr 1 2 1 1X2 2
dx;g . de . +
dr = XX — X2 T =X1TX2

13. For which value of a has

dx1 ( + )
_ = X

F7 XX 4

dx

d—f :x§+xg—x1

a unique equilibrium? Characterize its stability.

14. Assume that a > 0. Find all point equilibria of

dx1
— =1—ax;x,
dt
dxg
— =4dxXiX; — X2
dt

and characterize their stability.

m11.3.2
15. Assume that

dxl
E = x1 (10 — 2x; — x3)
dxz
E = xg(ll] — K 23\?2)

(a) Graph the zero isoclines.
(b) Show that (%, 13—0) is an equilibrium, and use the analytical
approach to determine its stability.

16. Assume that

dxl

— =x(10—x; —2
di x1( X1 X2)
4, (10 — 2x )
di = X2 1— X2

(a) Graph the zero isoclines.

(b) Show that (1—3?, %) is an equilibrium, and use the analytical
approach to determine its stability.

In Problems 17-22, use the graphical approach for 2 X 2 systems
to find the sign structure of the Jacobi matrix at the indicated
equilibrium. If possible, determine the stability of the equilibrium.
Assume that the system of differential equations is given by

dX1

T = fi(x1, x2)
B _ b, )
dr = 2\x1, x2

Furthermore, assume that x, and x, are both nonnegative. In each
problem, the zero isoclines are drawn and the equilibrium we want
to investigate is indicated by a dot. Assume that both x; and x,
increase close to the origin and that f, and f, change sign when
crossing their zero isoclines.

17. See Figure 11.43.

X5 A

Figure 11.43

18. See Figure 11.44.

Xy A

1
Figure 11.44
19. See Figure 11.45.
x A
;
Figure 11.45
20. See Figure 11.46.
x4
dey _
o
2

Figure 11.46
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21. See Figure 11.47. 23, Let
XA ﬁ =x1(2 —x1) —x1%2
dx; dr
?: dX2
E = X1X72 — X2

(a) Graph the zero isoclines.

(b) Show that (1, 1) is an equilibrium. Use the graphical approach
to determine its stability.

24. Let
dx1 2
. E:xl@—xl)—xlxg
f;] dxg
. = A1X — X
Figure 11.47 dt

) (a) Graph the zero isoclines.
22. See Figure 11.48.

X A

(b) Showthat (1, 1) 1s an equilibrium. Use the graphical approach
to determine its stability.

Figure 11.48

B 11.4 Nonlinear Systems: Applications

B 11.4.1 The Lotka—Volterra Model of Interspecific Competition

Imagine two species of plants growing together in the same plot. They both
use similar resources: light, water, and nutrients. The use of these resources
by one individual reduces their availability to other individuals. We call this
type of interaction between individuals competition. Intraspecific competition
occurs between individuals of the same species, interspecific competition between
individuals of different species. Competition may result in reduced fecundity
or reduced survivorship (or both). The effects of competition are often more
pronounced when the number of competitors is higher.

In this subsection, we will discuss the Lotka—Volterra model of interspecific
competition, which incorporates density-dependent effects of competition in the
manner described previously. The model 1s an extension of the logistic equation
to the case of two species. To describe it, we denote the population size of species
1 at time ¢ by N;(¢) and that of species 2 at time ¢ by N,(¢). Each species grows
according to the logistic equation when the other species is absent. We denote their
respective carrying capacities by K; and K3, and their respective intrinsic rates of
growth by r; and r,. We assume that K, K3, ri, and r, are positive. In addition,
the two species may have inhibitory effects on each other. We measure the effect
of species 1 on species 2 by the competition coefficient o1; the effect of species 2 on
species 1 is measured by the competition coefficient «1>. The Lotka—Volterra model
of interspecific competition is then given by the following system of differential
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