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Course Introduction

Section 6.3: Applications of Integration

We are interested in the following three applications of integrals:

(1) average of a continuous function on [a, b];
(2) area between curves;

(3) cumulative change.
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Average Values

It is easy to calculate the average value of finitely many numbers

Yi,¥2,---5¥n:
yity2+---+yn

n
But how do we compute the average temperature during a day if infinitely

many temperature readings are possible?

Yavg —

In general, let's try to compute the average value of a function y = f(x),
a < x < b. We start by dividing the interval [a, b] into n equal
subintervals, each with length Ax = (b — a)/n. Then we choose points
ci,...,Cp in successive subintervals and calculate the average of the
numbers f(c1), ..., f(cn):
)+ + Fln)
n
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Since Ax = (b — a)/n, we can write 1/n = Ax/(b — a) and the average
value becomes

fla)Ax+ -+ f(c)Ax 1 4 '
p— —b_aZf(c,)Ax.

i=1
If we let n increase, we would be computing the average value of a large
number of closely spaced values. More precisely,

li f(c,)Ax— ——/ f(x) dx.

n—o0

I'

Average of a Continuous Function on [a, b]
Assume that f(x) is a continuous function on [a, b]. The average value of
f on the interval [a, b] is defined to be "

1 b
f:a\vg - E‘;—a/ f(X) dXv
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Cumulative Change

Geometric Meaning

Mean Value Theorem for Definite Integrals

Assume that f(x) is a continuous function on [a, b]. Then there exists a
number ¢ € [a, b] such that

b
f(c)(b— a) :/ f(x) dx.

That is, when f is continuous, there exists a number ¢ such that

f(c) = favg. If f is a continuous, positive valued function, f,g is that
number such that the rectangle with base [a, b] and height f,,g has the
same area as the region’finderneath the graph of f from a to b.

TSR TSI TS
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(Online Homework #14)

Example 1

If a cup of coffee has temperature 95°C in a room where the temperature
is 20°C, then, according to Newton's Law of Cooling, the temperature of
the coffee after t minutes is

T(t) = 20 4 75e~/%0.

What is the average temperature (in degrees Celsius) of the coffee during
the first half hour?
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Find the area between y = 8sinx and y = 10 cos x over the interval [0, 7].

10 oS = j = R sn x
Sketch the curves if necessary. '
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Example 4| (Online Homework #4)

Find the area between y = e and y = ™ over [0,1].
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Example 5| (Online Homework #6)

Find the area of the quadrangle with vertices (4,2), (—5,4), (=2, —4),
and (3,—3).
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(Online Homework #7)

Example 6

Consider the area between the graphs x + y = 14 and x + 6 = y?

This area can be computed in two different ways using integrals.

m First of all it can be computed as a sum of two integrals

/ab f(x)dx+/bcg(x)dx

where a = , b= : , and f(x) = g(x) =
m Alternatively this area can be computed as a single integral
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Example 7

Average

(Online Homework #5)

Area Between Curves

Cumulative Change

Find the value(s) of ¢ such that the area of the region bounded by the
parabolae y = x2 — c? and y = c? — x* is 1944.

C
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Cumulative Change

Suppose that we have a population whose size at time t is given by N(t).

Suppose further that its rate of growth is given by the initial value problem
dN
Then, by Part | of the Fundamental Theorem of Calculus we have that

N(t) = /Ot F(u)du+ C

represents all antiderivatives of f(t) [or dN/dt].

0
Now, N(0) = / f(uydu+C=C so C=No= N(0). Therefore
0

—_——
=0

N(t) = /Ot f(u) du+ Ny or N(t) — N(0) = /Ot f(u)dul
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More generally, the IVP: —Cil_,t\fl = f(t) N(a) = N, has solution
t t
N
N(t) — N(a) = / f(u)du= / CCI]—U du

That is
cumulative change /t
— du
on the interval [a, t] a

Similarly, if p(t) is the position function of an object at time t, then

instantaneous rate of

change at time u

d,
= =v) p(a) = pa
b b dp
gives -~ p(b) —p(a) = / v(t) dt = / — dt|.
N —— a a dt
distance traveled on [a,b]
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Example 8| (Problem #2, Section 6.3, page 349)

Suppose the change in biomass B(t) at time t during the interval [0,12]

follows the equation
B _ cos Tt
dt 6 )

How does the biomass at time t = 12 compare to the biomass at time
t =207
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(Problem #6, Section 6.3, page 3_49) L

Example 9

d .
If aﬂ represents the rate of change of the weight of an organism of age x,
X

5
/d_WdX
3 dX

explain what

means.
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