Section 6.3 (Applications of integration)

Alberto Corso

(alberto.corso@uky.edu)

Department of Mathematics University of Kentucky

http://www.ms.uky.edu/~ma138

Lectures 1 & 2

1/17

Course Introduction

Section 6.3

Area Between Curves

Cumulative Change

Average Values

It is easy to calculate the average value of finitely many numbers y_1, y_2, \ldots, y_n :

 $y_{\text{avg}} = \frac{y_1 + y_2 + \dots + y_n}{n}$

But how do we compute the average temperature during a day if infinitely many temperature readings are possible?

In general, let's try to compute the average value of a function y = f(x), a < x < b. We start by dividing the interval [a, b] into n equal subintervals, each with length $\Delta x = (b-a)/n$. Then we choose points c_1, \ldots, c_n in successive subintervals and calculate the average of the numbers $f(c_1), \ldots, f(c_n)$:

$$\frac{f(c_1)+\cdots+f(c_n)}{n}$$

http://www.ms.uky.edu/~ma138

Section 6.3: Applications of Integration

We are interested in the following three applications of integrals:

Average

(1) average of a continuous function on [a, b];

Section 6.3

- area between curves;
- cumulative change.

http://www.ms.uky.edu/~ma138

Lectures 1 & 2

Course Introduction

Course Introduction

Section 6.3

Area Between Curves Average

Cumulative Change

Cumulative Change

Area Between Curves

Since $\Delta x = (b-a)/n$, we can write $1/n = \Delta x/(b-a)$ and the average value becomes

$$\frac{f(c_1)\Delta x + \cdots + f(c_n)\Delta x}{b-a} = \frac{1}{b-a} \sum_{i=1}^n f(c_i)\Delta x.$$

If we let n increase, we would be computing the average value of a large number of closely spaced values. More precisely,

$$\lim_{n\to\infty}\frac{1}{b-a}\sum_{i=1}^n f(c_i)\Delta x=\frac{1}{b-a}\int_a^b f(x)\,dx.$$

Average of a Continuous Function on [a, b]

Assume that f(x) is a continuous function on [a, b]. The average value of f on the interval [a, b] is defined to be

$$f_{\text{avg}} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx,$$

http://www.ms.uky.edu/~ma138

Course Introduction

Geometric Meaning

Mean Value Theorem for Definite Integrals

Assume that f(x) is a continuous function on [a, b]. Then there exists a number $c \in [a, b]$ such that

$$f(c)(b-a) = \int_a^b f(x) dx.$$

That is, when f is continuous, there exists a number c such that $f(c) = f_{\text{avg}}$. If f is a continuous, positive valued function, f_{avg} is that number such that the rectangle with base [a,b] and height f_{avg} has the same area as the region underneath the graph of f from f to f.

http://www.ms.uky.edu/~ma138

Lectures 1 & 2

Notice that the graph of $T(t) = 20 + 75e^{-t/50}$ Leoks eike: We want to compute Tang = $\frac{1}{30-0}$. $\int_{0}^{30} (20 + 75e^{-t/50}) dt$ = $\frac{1}{30} \left[20t + 75e^{-t/50} - (-50) \right]_{0}^{30} = \frac{1}{30} \left[(20.30 - 3750)e^{-3750} - (-50) \right]_{0}^{30} = \frac{1}{30} \left[(20.30 - 3750)e^{-3750} - (-50) \right]_{0}^{30} = \frac{1}{30} \left[(4350 - 3750)e^{-3750} - (-3750)e^{-3750} \right]_{0}^{30} = 145 - 125e^{-3750} \approx 7639 - (-3750)e^{-3750}$

Example 1 (Online Homework #14)

If a cup of coffee has temperature 95° C in a room where the temperature is 20° C, then, according to Newton's Law of Cooling, the temperature of the coffee after t minutes is

$$T(t) = 20 + 75e^{-t/50}.$$

What is the <u>average temperature</u> (in degrees Celsius) of the coffee during the first half hour?

http://www.ms.uky.edu/~ma138

Lectures 1 & 2

Course Introduction

Section 6.3

Area Between Curves

Cumulative Change

Area Between Curves

Assume f and g are continuous and $f(x) \ge g(x)$ for all x in [a, b]. The area A of the region bounded by the curves y = f(x), y = g(x), and the linesx = a, x = b, is

$$A = \int_a^b [f(x) - g(x)] dx.$$

http://www.ms.uky.edu/~ma138

Course Introduction Section 6.3 Average Area Between Curves Cumulative Change

Example 2 (Online Homework #2)

Find the area of the region enclosed by the two functions $y = 7x^2$ and $y = x^2 + 6$.

http://www.ms.uky.edu/~ma138

Lectures 1 & 2

Course Introduction Section 6.3 Average Area Between Curves Cumulative Change

Example 3 (Online Homework #3)

Find the area between $y=8\sin x$ and $y=10\cos x$ over the interval $[0,\pi]$. Sketch the curves if necessary.

 α is the angle such that $10\cos \alpha = y = 8\sin \alpha$ $\frac{\sin \alpha}{\cos \alpha} = \frac{10}{8} = \frac{5}{4}$

Thus the area we want is: $\int_{\alpha}^{\alpha} (10\cos x - 8\sin x) + \int_{\alpha}^{\infty} (8\sin x - 10\cos x) dx = 0$ $= \left[10\sin x + 8\cos x\right]_{\alpha}^{\alpha} + \left[-8\cos x - 10\sin x\right]_{\alpha}^{\pi} = 0$ $= \left(10\sin x + 8\cos x\right)_{\alpha}^{\alpha} + \left[-8\cos x - 10\sin x\right]_{\alpha}^{\pi} = 0$ $= \left(10\sin x + 8\cos x\right)_{\alpha}^{\alpha} + \left[-8\cos x\right]_{\alpha}^{\alpha} + \left[-8\cos x\right]_{\alpha}^{\alpha} + \left[-8\cos x\right]_{\alpha}^{\alpha} + \left[-8\cos x\right]_{\alpha}^{\alpha} = 0$

$$= 20 \sin \alpha + 16 \cos \alpha$$
Now
$$\tan \alpha = \frac{10}{8} = \frac{5}{4}$$

$$\sin \alpha = \frac{5}{\sqrt{41}}$$

$$\sin \alpha = \frac{5}{\sqrt{41}}$$

$$\therefore \text{ Area} = 20 \cdot \frac{5}{\sqrt{41}} + 16 \cdot \frac{4}{\sqrt{41}} = \frac{164}{\sqrt{41}} = \frac{4 \cdot 41}{\sqrt{41}}$$
$$= |4\sqrt{41}| \approx 25.6125$$

Course Introduction Section 6.3 Average Area Between Curves Cumulative Change

Example 4 (Online Homework #4)

Find the area between $y = e^x$ and $y = e^{4x}$ over [0, 1].

http://www.ms.uky.edu/~ma138

Lectures 1 & 2

Course Introduction

Example 5 (Online Homework #6)

Section 6.3

Find the area of the quadrangle with vertices (4,2), (-5,4), (-2,-4), and (3,-3).

Average

http://www.ms.uky.edu/~ma138

Example 6 (Online Homework #7)

Consider the area between the graphs x + y = 14 and $x + 6 = y^2$.

This area can be computed in two different ways using integrals.

First of all it can be computed as a sum of two integrals

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} g(x) dx$$

Alternatively this area can be computed as a single integral

$$\int_{\alpha}^{\beta} h(y) \, dy$$

where $\alpha = \underline{\hspace{1cm}}$, $\beta = \underline{\hspace{1cm}}$, and $h(y) = \underline{\hspace{1cm}}$.

A(4,2)B(-5,4)(-2,-4) $\mathbb{D}(3,-3)$ One can certainly compute the equations of the 4 lines and do: $\int (eq_1 - eq_2) dx + \int (ep_1 - ep_3) dx$

8.9=72 = area of the big rectary le - minus the area of the 4 triangles i.e. $72 - \left(\frac{8.3}{2} + \frac{5.1}{2} + \frac{5.1}{2} + \frac{9.2}{2} + 1\right)$ = 42 - 12 - 5 - 9 - 1 = 72 - 27 = |45|

http://www.ms.uky.edu/~ma138

Lectures 1 & 2

The intersection points of [x+y=14] and [x+6=y2] are given by $\begin{cases} x+y=14 \\ x+6=y^2 \end{cases} = y^2-6 \iff (y^2+y-20=0)$ (y+5)(y-4)=0 : y=4,-5 hence x=10,19: A(10,4) B(19,-5). The graph is:

 $\int_{-\infty}^{\infty} \sqrt{x+6} - \left(-\sqrt{x+6}\right) dx + \int_{-\infty}^{\infty} \left[\left(4-x\right) - \left(\sqrt{x+6}\right)\right] dx$ $= \int_{0}^{10} 2\sqrt{x+6} dx + \int_{0}^{11} (14-x+\sqrt{x+6}) dx =$ $= \left[4_{2}(x+6)^{\frac{3}{2}}\right]_{-6}^{10} + \left[14x - \frac{1}{2}x^{2} + \frac{2}{3}(x+6)^{\frac{3}{2}}\right]_{-6}^{19}$ $= \left[\frac{4}{3}.64 - 0\right] + \left[\left(14.19 - \frac{19^{2}}{2} + \frac{2}{3}.125\right) - \left(140 - 50 + \frac{2}{3}.64\right)\right]$ $=\frac{2.64}{3.64}+266-\frac{361}{2}+125\frac{2}{3}-90$ $= \frac{2}{8}(189) + 266 - 180 - \frac{1}{2} - 90 = 126 + 266 - 270 - \frac{1}{2}$ $= 392 - 270 - \frac{1}{2} = 122 - \frac{1}{2} = 121.5$

Second way: $\int_{0}^{\pi} \left[(14-y) - (y^{2}-6) \right] dy = \int_{0}^{\pi} \left((20-y-y^{2}) dy \right) =$ $= \left[20y - \frac{1}{2}y^2 - \frac{1}{3}y^3\right]_{-\Gamma}^{4} = \left[\left(20\cdot 4 - \frac{1}{2}(4)^2 - \frac{1}{3}(4)^3\right) - \frac{1}{2}(4)^3\right]_{-\Gamma}^{4}$ $-\left(20\left(-5\right)-\frac{1}{2}\left(-5\right)^{2}-\frac{1}{3}\left(-5\right)^{3}\right]=\left[\left(80-8-\frac{64}{3}\right)-\left(-100-\frac{27}{2}+\frac{125}{3}\right)\right]$ $= 80 - 8 + 100 - \frac{64}{3} + \frac{25}{2} - \frac{125}{3} = 172 - \frac{187}{3} + \frac{25}{2} = 109 + 12.5 = 121.5$

Example 7 (Online Homework #5)

Find the value(s) of c such that the area of the region bounded by the parabolae $y=x^2-c^2$ and $y=c^2-x^2$ is 1944.

http://www.ms.uky.edu/~ma138

Lectures 1 & 2

Cumulative Change

Section 6.3

Course Introduction

Suppose that we have a population whose size at time t is given by N(t). Suppose further that its rate of growth is given by the initial value problem

IVP:
$$\frac{dN}{dt} = f(t) \qquad N(0) = N_0.$$

Then, by Part I of the Fundamental Theorem of Calculus we have that

$$N(t) = \int_0^t f(u) \, du + C$$

represents all antiderivatives of f(t) [or dN/dt].

Now,
$$N(0) = \underbrace{\int_0^0 f(u) du}_{0} + C = C$$
 so $C = N_0 = N(0)$. Therefore

$$N(t) = \int_0^t f(u) du + N_0$$
 or $N(t) - N(0) = \int_0^t f(u) du$.

http://www.ms.uky.edu/~ma138

Course Introduction

More generally, the IVP: $\frac{dN}{dt} = f(t)$ $N(a) = N_a$ has solution

$$N(t) - N(a) = \int_a^t f(u) du = \int_a^t \frac{dN}{du} du$$

That is

$$\left\{ \begin{array}{c} \text{cumulative change} \\ \text{on the interval } [a, t] \end{array} \right\} = \int_a^t \left\{ \begin{array}{c} \text{instantaneous rate of} \\ \text{change at time } u \end{array} \right\} du$$

Similarly, if p(t) is the position function of an object at time t, then

$$\frac{dp}{dt} = v(t) \qquad p(a) = p_a$$

gives
$$\rightsquigarrow$$

$$\underbrace{p(b) - p(a)}_{\text{distance traveled on } [a,b]} = \int_a^b v(t) \, dt = \int_a^b \frac{dp}{dt} \, dt$$

http://www.ms.uky.edu/~ma138

Lectures 1 & 2

$$\frac{dB}{dt} = \cos\left(\frac{\pi}{6}t\right)$$

Thus
$$B(12) - B(0) = \int \frac{dB}{dt} dt = \int \cos(\frac{\pi}{6}t) dt$$

$$= \frac{6}{\pi} \sin(\frac{\pi}{6}t)$$

$$= \frac{6}{\pi} \left(\sin(\frac{\pi}{6}t) - \sin(\frac{\pi}{6}t)\right)$$

$$= \frac{6}{\pi} \left(\sin(2\pi) - \sin(0)\right) = 0$$

Thus B(12) - B(0) = 0 OR B(12) = B(0)Thus B(12) - B(0) = 0Thus B(12) - B(0) = 0Thus B(12) - B(0) = 0Thus B(12) - B(0) = 0

Example 8 (Problem #2, Section 6.3, page 349)

Suppose the change in biomass B(t) at time t during the interval [0,12]follows the equation

$$\frac{dB}{dt} = \cos\left(\frac{\pi}{6}t\right).$$

How does the biomass at time t=12 compare to the biomass at time t = 0?

http://www.ms.uky.edu/~ma138

Lectures 1 & 2

Course Introduction

Example 9 (Problem #6, Section 6.3, page 349)

If $\frac{dw}{dx}$ represents the rate of change of the weight of an organism of age x, explain what

Area Between Curves

 $\int_{0}^{5} \frac{dw}{dx} dx$ means.

Section 6.3

http://www.ms.uky.edu/~ma138

 $\int_{3}^{5} \frac{dw}{dx} dx = w(5) - w(3)$

i.e. it represents the allarge in weight between age 3 and 5