MA 138 — Calculus 2 with Life Science Applications
Equilibria and Their Stability
(Section 8.2)

Alberto Corso
(alberto.corso@uky.edu)

An explicit solution of a DE can inform us about long-term behavior.

What if it is hard to find the solutions?

We saw, for example, that a direction field gives us visual information
about the solutions of a first order DE.
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Q.: What does the above direction field tell us
about the solutions of the DE?
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Equilibria of an Autonomous DE

We consider autonomous differential equations of the form

dy
ol g(y)

where we will typically think of x as time.

Constant solutions form a special class of solutions of autonomous
differential equations. These solutions are called (point) equilibria.

For example

Nyi(t) =0 and No(t) = K

. - . dN N
are constant solutions to the logistic equation yri rN{1— <)
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Finding Equilibria

If y (read “y hat") satisfies

g(y)=0
then ¥ is an equilibrium of the autonomous differential equation 1

dy
| dx =g(y)-

‘TBasic PropertyJ

The basic property of equilibria is that if, initially (say, at x = 0),
y(0)=y y(x)=y forall x>0.

and y is an equilibrium, then
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Stability of Equilibria

Of great interest is the stability of equilibria of a differential equation.
This is best explained by the example of a ball on a hill vs a ball in a valley:

a ball rests at the bottom of a valley

A\

In either case, the ball is in equilibrium because it does not move.

a ball rests on top of a hill

If we perturb the ball by a small amount (i.e., if we move it out of its
equilibrium slightly) the ball on the left will roll down the hill and not
return to the top, whereas the ball on the right will return to the bottom

of the valley.

The ball on the left is unstable and the ball on the right is stable.
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Stability for Equilibria of DE

. I d . ~
Suppose that y is an equilibrium of Y _ g(y); thatis, g(y)=0.

dx

We look at what happens to the solution when we start close to the
equilibrium; that is, we consider the solution of the DE when we move
away from the equilibrium by a small amount, called a small perturbation.

We say that ¥ is locally stable if the solution returns to the equilibrium y

after a small perturbation;

We say that y is unstable if the solution does not return to the
equilibrium y after a small perturbation.

We will now discuss an analytical and a graphical method for analyzing

stability of equilibria.
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Analytical Approach to Stability

Stability Criterion |

dy f
a —g(y)

Consider the differential equation where g(y) is a

differentiable function.
Assume that ¥ is an equilibrium; that is, g(y) = 0.

Then
m y is locally stable if g'(y) <0;
y

m y is unstable if g’(y) > 0.

Note:
g'(y) is called an eigenvalue; it is the slope of the tg. line of g(y) at y.

http://www.ms.uky.edu/“mal38

Example 1

Find the equilibria of this differential equation and discuss their stability
using the analytical approach (= stability criterion)
dy

2 _
dx y
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Example 2
PN - - - = e
~ =0 _6_:_, 2_ _y =0 l‘. = 2
a&\@ > & _ (ZJL Find the equilibria of this differential equation and discuss their stability

(s e iwcprc : i = ili iteri

_ using the analytical approach (= stability criterion)
%LL/L’ é& L'"L(A‘ (VP J dy (2 )

- — =y(2-y).

dx
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Example 3

L %(2~5L> SO 2(%): 2(2”%0
:2’3~51 -

Find the equilibria of this differential equation and discuss their stability
using the analytical approach (= stability criterion)

dy 2
- = — 4.
dx y
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Example 4| (Problem # 5, Exam 2, Spring '13)

Suppose that a fish population evolves according to the logistic equation
and that fish are harvested at a rate proportional to the population size.
That is,

dN N

— =g(N)=3N{1———] —0.5N.

s~ &) ( 6, ooo)
(a) Find all equilibria N of the given differential equatlon
(b) Use the eigenvalue approach, that is compute g (N) to analyze the

stability of the equilibria found in (a).
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N(t); then we have
0,a, K.

ﬁgw € luia

eilie we med g7(y).
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where r, a, and K are positive constants. We assume that 0 < a < K.

As in the logistic equation, K denotes the carrying capacity.

N
K

0

(- a)(1-

-\33+43~/3} =

dN

(‘»}1—1) (2 -uw = Q:]L+2\6L>Q2—g>
dt

-
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Allee Effect (Problem # 93, Section78.2, p. 454)

@) To (?‘ . ‘}6«2 -Q‘C//k/u E e we /&5('

) To Ao

due to lack of suitable mates. This phenomenon is called an Allee effect

A sexually reproducing species may experience a disproportionately low

recruitment rate when the population density falls below a certain level,
(Allee, 1931).

recruitment rate is negative, meaning that the population will shrink and

A simple extension of the logistic equation incorporates the effect.

We denote the size of a population at time t by N
The constant a is a threshold population size below which the

ultimately go to extinction. Analyze the equilibria N
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. dN N
Phase portrait of — = 0.2N(N — 4) (1 — —)
dt 10

equilibria: N =0,4,10
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Example 6| (Bonus Problem (b), Exam 2, Spring '14)

A tumor can be modeled as a spherical collection of cells and that it
acquires resources for growth only through its surface area. All cells in a
tumor are also subject to a constant per capita death rate. With these
assumptions, the dynamics of tumor mass M (in grams) is therefore
modeled by the differential equation

dMm

dt
where  and p are positive constants. The first term represents tumor

growth via nutrients entering through the surface; the second term

= kM?/3 — uM,

represents a constant per capita death rate.

Suppose x = 1, that is the dynamics of tumor mass is modeled as
dM
dt

Which value does the tumor mass approach as time t — co? Explain.
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