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Analytical Approach to Stability

Stability Criterion

\%|

Consider the differential equation —— = g(y) where g(y) is a

dx
differentiable function.

Assume that y is an equilibrium; that is, g(y) = 0.

Then
m y is locally stable if g'(y) < 0;

m y is unstable if g/(y) > 0.
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Note:
g'(y) is called an eigenvalue; it is the slope of the tg. line of g(y) at y.
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Proof of the Stability Criterion

. . d . ~
m We assume that y is an equilibrium of —dl =g(y). [ie, g(¥)=0]
Ix
m We consider a small perturbation about the equilibrium y; we express
itas y=y+z wherezissmall and may be either positive or

negative. Then

dy d . dz
ax —a(y +2)= In
d -~
since dy/dx = 0 (y is a constant). We find that d—)Z( =gy +2).

m Since z is small, we can approximate g(y + z) by its linear
approximation about Y.
m In general, the linear approximation of g(0d) about y is given by
L(O) =g(y) + (O = ¥)g'(¥) = (O - y)g'(¥),

since g(y) = 0.
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m Therefore, the linear approximation of g(y + z) is given by

gv+2) =Ly +2)=(y+2z-y)g¥)=28'(©)

R dz
m If weset \ =g/(y) then — = Az
is the first-order approximation of the perturbation.
m This equation has the solution

z(x) = z0e™ e y(x)=y+ (0 — )7)e>‘x.

m This solution has the property that |i_>m y(x)=y ifA<O.
That is, the system returns to the eql);ilil(;?ium y after a small
perturbation. This means that y is locally stable if A = g'(y) <o.
m On the other hand, if A > 0, then y(x) does not go to ¥ as x — oo,
implying that the system will not return to the equilibrium y after a
small perturbation, and y is unstable.
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Graphical Approach to Stability

Consider the autonomous differential equation % =g(y).

Suppose that g(y) is of the form given in the figure below
dy
dx

g(y)

To find the equilibria of
our DE, we set g(y) =0.

0 5/\1\//\2 y
Graphically, this means that if we graph g(y) (i.e., the derivative of y with
respect to x) as a function of y, then the equilibria are the points of
intersection of g(y) with the horizontal axis, which is the y-axis in this

case, since y is the independent variable.
For our choice of g(y), the equilibria are at y =0, y1, and y>.
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We can then use the graph of g(y) to say the following about the fate of a
solution on the basis of its current value:

m if the current value y is such that g(y) > 0 (i.e., dy/dx > 0),
then y will increase as a function of x;

m if y is such that g(y) <0 (i.e., dy/dx < 0),
then y will decrease as a function of x;

m the points y where g(y) = 0 are the points where y will not change
as a function of x [since g(y) = dy/dx = 0]. These are the equilibria.

dy g(y)
dx

locally stable

unstjable

P

The arrows close to the equilibria indicate the type of stability.
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Example 1

Find the equilibria of this differential equation and discuss their stability
using the graphical approach

dy _
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Example 2

Find the equilibria of this differential equation and discuss their stability
using the graphical approach

dy
L —y(2-y).
™ y(2—-y)

NNNNNY NN
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NN N NN NN NN N NN NN NN NN NN NN NN NN NN NN NNNNNNN

d.
Note: d;y =y(2—y)=2y (1 — g) is a logistic equation with r = K = 2.
IX
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Example 3

Find the equilibria of this differential equation and discuss their stability
using the graphical approach

dy 2
Y2
dx y
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Example 4| (Problem # 5, Exam 2, Spring '14)

. : . : d
Consider the autonomous differential equation Y _ g(y).

dx
(a) Use the graph below to find the equilibria y of the differential

equation.

(b) Use the graph below and the geometric approach to discuss the
stability of the equilibria you found in (a).

dy/dx

w3 2.1/ 1 2 3 4 Y
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Example 4| (cont.ed)

(c) Using the information found in (a) and (b), which of the following
direction fields (phase portraits) matches the given differential
equation? Circle the correct one.
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Example 5| (Problem # 90, Section 8.2, p. 454)

Suppose that a fish population evolves according to the logistic equation
and that a fixed number H of fish per unit time are removed. That is,

dN N
N N1 =) -
ar x)H

Assume that r = 2 and K = 1000.

(a) Find possible equilibria, and discuss their stability when H = 100.
(b) What is the maximal harvesting rate that maintains a positive

population size?

Note: This is a classical example of bifurcation theory. There is something silly about this model of fishery: the population can
become negative! An improved model of a fishery is the following

dN N N
—:rN(lf—)—H )
dt K a+ N

where H and a are positive constants.
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P s Pt Example 6| (Problem # 4, Exam 2, Spring '14)
/w\ //"“ \\\ > — — 2
/ A simple model of predation: Suppose that N(t) denotes the size of a
~—_ J\«WMW N Nk e population at time t. The population evolves according to the logistic
%U\‘) = *N — \< NT-H =0 = TR equation, but, in addition, predation reduces the size of the population so
—_ R that the rate of ch is gi b
— “TT kKR e N kN o+ KH at the rate of change is given by
& T dN _ N 7N
- ‘ VNSRS -Vl w) T
T __k’/,—j dN/dt The first term on the right-hand side describes the logistic growth;
™~ _ K t \/ Kz - Lf K% the second term describes the effect of predation.
N\/L =
2
e wwed Ha dison avincan ™ fo b }’W‘J"m ? N
S / ! R ——— |
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Example 6| (cont.ed)

(a) Find (algebraically) all the equilibria N of

dN N N
E?_N<1_E>_m‘

(b) Use the graph of g(N) to classify the stability of the equilibria N

found in (a).
N N

. ! —_— —_—— _—

(c) Find g’(N), where g(N) = N(l 20) 44+ N

(d) Use the eigenvalues method (stability criterion) to classify the
stability of the equilibria N found in (a).

(g +n) N( ZO“M) — IN=o0

2
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What is Bifurcation?

The dynamics of direction fields for first order autonomous differential
equations is rather limited: all solutions either settle down to equilibrium
or head out to Foo0.

Given the triviality of the dynamics, what's interesting about these DEs?
The answer is: dependence on parameters.

The qualitative structure of the flow can change as parameters are varied.
In particular, equilibria can be created or destroyed, or their stability can

change.

These qualitative changes in the dynamics are called bifurcations, and the
parameter values at which they occur are called bifurcation points.
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Extrapolating from our simple model of fishery (Example 5), the
prototypical example of a bifurcation is given by

dy 2
o

where r is a parameter, which may be positive, negative, or zero.
m When r < 0 there are two equilibria, one stable and one unstable;
m when r = 0, the two equilibria coalesce into a half-stable equilibrium
aty =0;
m as soon as r > 0 there are no fixed points.

We say that a bifurcation occurred at r = 0 since the direction fields for
r < 0 and r > 0 are qualitatively different.
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