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Systems of Differential Equations

m Suppose that we are given a set of variables x1, x2, ..., x,, each

depending on an independent variable, say, t, so that
X1 = Xl(l’), Xp = Xz(t), ceey Xp = Xn(t).

m Suppose also that the dynamics of the variables are linked by n
differential equations (=DEs) of the first-order; that is,

C/X1

I = gl(t7X17X2a"‘7Xn)
dx
d—tn = go(t,x1,x2,...,%n)

m This set of equations is called a system of differential equations.
m On the LHS are the derivatives of x;(t) with respect to t. On the RHS
is a function g; that depends on the variables x1, xo,...,,x, and on t.
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Examples

m Kermack & McKendrick epidemic disease model (SIR, 1927)

( dS
— = —bSl
dt
S = S(t) = # of susceptible individuals
dl o b S/ / I = I(t) = # of infected individuals
EE - —a4a R = R(t) = # of removed individuals (=no longer susceptible)
a, b = constant rates
dR
— = al
\ dt

m Lotka-Volterra predator-prey model (1910/1920):

dN N = N(t) = prey density
e = r N — a PN P = P(t) = predator density
dt r = intrinsic rate of increase of the prey
dP a = attack rate
_ e ab PN — d P b = efficiency rate of predators in turning preys into new offsprings
dt d = rate of decline of the predators
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Direction Field of a SyStA

m Review the notion of the direction field of a DE of the first order
dy/dx = f(x,y). We encountered this notion just before Section 8.2
(Handout; Lectures 15 & 16).

m Consider, now a system of two autonomous differential equations

dx
W gi(x,y)
dy
v g(x,y)

m Assuming that y is also a function of x and using the chain rule, we
can eliminate t and obtain the DE
dy _dy/dt _ g(xy)
@i dn/dt - gilx. v

of which we can plot the direction field.
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Example| (Lotka-Volterra)
d
Consider the system of DEs P x 4xy  and dy = 2xy — 3y.
dt dt
d 2x —
The direction field of the differential equation Y _ EX—:S)y has been
dx  x(1-—4y)

Notice that the trajectories are closed curves. Furthermore, they all seem
to revolve around the point P(3/2,1/4). This is the point where the
factors 2x — 3 and 1 — 4y of dy/dt and dx/dt, respectively, are both zero.
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m We first look at the case when the g;'s are linear functions in the

variables x1, xo, ..., x, — that is,

d
L= an(xa .t a6 +A()
dxp,
™ ant(t)x1 + ...+ ann(t)xn + fa(t)
m We can write the linear system in matrix form as
x1(t) a11(t) ain(t) || x(t) f(t)
dt - *
Xn(t) an1(t) ann(t) Xn(t) fn(1)

and we call it an inhomogeneous system of linear, first-order

differential equations.
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m We can write our inhomogeneous system of linear, first-order
differential equations as follows

dx

— = A(t)x + f(t

= At + F(1)

m We are mainly interested in the case when f(t) = 0, that is,

dx
— = A(t
= Alt)x,

an homogeneous system of linear, first-order differential equations.

m Finally, we will study the case in which A(t) does not depend on t

dx
— = Ax,
dt
an homogeneous system of linear, first-order differential

equations with constant coefficients.
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. oo T e
(Problem #8, Exam 3, Spring 2013)

x(t) = e* +5e~t y(t) = 4e* — et

(whose graphs are given below) are solutions of the system of DEs

Example 1

(a) Verify that the functions and

o _
dt y
dy

2 = 4

pm X + 3y

with x(0) =6 and y(0) = —1.
(b) Rewrite the given system of DEs and its solutions in the form

LB Bel-e]eel )

system of differential equations solutions

for appropriate choices of the constants a, b, ¢, d, a, 3,7, and 4.
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Specific Solutions of a Linear System of DEs

m More precisely,

dx
m Consider the system — = Ax.

dt

m We claim that the vector-valued function

V]_e)‘t %1 N
x(t) = = et
vpett Vo

where \, v; and v, are constants, is a solution of the given system of
DEs, for an appropriate choice of values for A, v1, and v».

Vi
[ } is an eigenvector of the matrix A
V2

corresponding to the eigenvalue A of A.
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The Superposition Principle

Principle

Suppose that
dX1

dt ail Xl(t)

ai2

dt

yi(t)

Zl(t)
z(t) =

2(t)

If y(t) = and
ya(t)

are solutions of the given system of DEs, THEN

x(t) = ay(t) + cz(t)

is also a solution of the given system of DEs for any constants ¢; and c;. |
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The General Solution

Let J
X
S A
T

where A is a 2 X 2 matrix with two real and distinct eigenvalues )\; and
A2 with corresponding eigenvectors vi and vs.

THEN

x(t) = civieMt + cpvpe?t

is the general solution of the given system of DEs.

The constants ¢; and ¢ depend on the initial condition.
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