MA 138 Worksheet #18

Section 9.3

3/7/24

1 Let $\mathbf{u} = \begin{bmatrix} 2\\1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -1\\-3 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} -2\\3 \end{bmatrix}$ be vectors in \mathbb{R}^2 .

Find $-1/2 \mathbf{u}$, $\mathbf{u} + \mathbf{v}$, $\mathbf{v} - \mathbf{w}$, $-\mathbf{v}$, and illustrate the results graphically.

2 Use a rotation matrix to rotate the vector $\begin{bmatrix} 1\\3 \end{bmatrix}$ counterclockwise by the angle $\pi/3$.

3 Match each linear transformation (labeled A. through F.) with its corresponding matrix (labeled (a) through (f)):

	$(a) \left[\begin{array}{rrr} 1 & 0 \\ 0 & -1 \end{array} \right]$
A. Indentity transformation	$(b) \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right]$
B. Reflection in the <i>x</i> -axis	
C. Reflection in the origin	$(c) \left[\begin{array}{rrr} 1 & 0 \\ 0 & 1 \end{array} \right]$
D. Projection onto the y-axis	$\begin{pmatrix} n \end{pmatrix} \begin{bmatrix} -1 & 0 \end{bmatrix}$
E. Contraction by a factor of 2	$(d) \left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right]$
F. Rotation through an angle of 90 degrees in the coun- terclockwise direction	$(e) \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]$
	$(f) \left[\begin{array}{cc} 0.5 & 0 \\ 0 & 0.5 \end{array} \right]$

- **4** Compute the determinant of the rotation matrix in #2. Compute the determinant of any rotation matrix.
- **5** Determine if v is an eigenvector of the matrix A. If so, find the corresponding eigenvalue λ .

(a)
$$A = \begin{bmatrix} 68 & 30 \\ -150 & -67 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 2 \\ 7 \end{bmatrix}$
(b) $A = \begin{bmatrix} 22 & -9 \\ 30 & -11 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$
(c) $A = \begin{bmatrix} 4 & -8 \\ 0 & -4 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$