MA 138 Worksheet #22

Sections 10.1 & 10.2

3/28/24

- **1.** Let $f_a(x,y) = ax^2 + y^2$ for $(x,y) \in \mathbb{R}$, where a is a positive constant.
 - (a) Assume that a = 1 and describe the level curves of $f_1(x, y) = x^2 + y^2$. The graph of $f_1(x, y)$ intersects both the x-z and y-z planes; show that these two curves of intersection are parabolas.
 - (b) Assume that a = 4. Then $f_4(x, y) = 4x^2 + y^2$ and the level curves satisfy $4x^2 + y^2 = c$. Use a graphing calculator to sketch the level curves for c = 0, 1, 2, 3, 4. These curves are ellipses. Find the curves of intersection of $f_4(x, y)$ with x-z and the y-z planes.
 - (c) Repeat (b) for a = 1/4.
 - (d) Explain in words how the surfaces of $f_a(x, y)$ change when a changes.

2. Find the limit
$$\lim_{(x,y)\longrightarrow(45,9)} xy\cos(x-5y)$$
.

3. Find the limit
$$\lim_{(x,y)\to(0,0)} \frac{(9x+y)^2}{81x^2+y^2}$$
.

- (a) Along the x-axis;
- (b) Along the y-axis;
- (c) Along the line y = x;
- (d) Along the line y = mx;
- (e) What is the limit?