MA 213 Worksheet #12

Section 14.5 10/04/18

1 Use the Chain Rule to find dz/dt.

14.5.1
$$z = xy^3 - x^2y$$
 $x = t^2 + 1$ $y = t^2 - 1$
14.5.3 $z = \sin(x)\cos(y)$ $x = \sqrt{t}$ $y = 1/t$

2 14.5.11 Use the Chain Rule to find $\partial z/\partial s$ and $\partial z/\partial t$.

$$z = e^r \cos(\theta)$$
 $r = st$ $\theta = \sqrt{s^2 + t^2}$

3 14.5.15 Suppose f is a differentiable function of x and y, and $g(u, v) = f(e^u + \sin(v), e^u + \cos(v))$. Use the table of values to calculate $g_u(0, 0)$ and $g_v(0, 0)$.

	f	g	f_x	f_y
(0,0)	3	6	4	8
(1,2)	6	3	2	5

4 14.5.23 Use the Chain Rule to find
$$\frac{\partial w}{\partial r}$$
 and $\frac{\partial w}{\partial \theta}$ when $r = 2$, $\theta = \pi/2$. $w = xy + yz + zx$ $x = r\cos(\theta)$ $y = r\sin(\theta)$ $z = r\theta$

5 Find
$$\partial z/\partial x$$
 and $\partial z/\partial y$ (assuming z is implicitly a function of x and y).

$$14.5.31 x^2 + 2y^2 + 3z^2 = 1$$

$$14.5.33 \quad e^z = xyz$$

- 6 14.5.39 Due to strange and difficult-to-explain circumstances, the length ℓ , width w, and height h of a box change with time. At a certain instant the dimensions are $\ell=1$ m and w=h=2 m, and ℓ and w are increasing at a rate of 2 m/s while h is decreasing at a rate of 3 m/s. At that instant find the rates at which the following quantities are changing.
 - a The volume
 - **b** The surface area
 - c The length of a diagonal