MA 213 Worksheet #6

Section 12.6 9/11/18

- 1 12.6.1 (a) What does the equation $y=x^2$ represent as a curve in \mathbb{R}^2 . (b) What does it represent as a surface in \mathbb{R}^3

 - (c) What does the equation $z = y^2$ represent?
- 2 Describe and sketch the surfaces.

12.6.3
$$x^2 + z^2 = 1$$

12.6.7 $xy = 1$

- **3** 12.6.11 Use traces to sketch and identify the surface $x = y^2 + 4z^2$.
- 4 Reduce the equation to one of the standard forms, classify the surface, and sketch it.

12.6.35
$$x^2 + y^2 - 2x - 6y - z + 10 = 0$$

12.6.37 $x^2 - y^2 + z^2 - 4x - 2z = 0$.

- **5** 12.6.43 Sketch the region bounded by the surfaces $z = \sqrt{x^2 + y^2}$ and $x^2 + y^2 = 1$ for $1 \le z \le 2$.
- **6** 12.6.17 Use traces to sketch and identify the surface $\frac{x^2}{9} + \frac{y^2}{25} + \frac{z^2}{4} = 1$.

(more on back)

21–28 Match the equation with its graph (labeled I–VIII). Give reasons for your choice.

21.
$$x^2 + 4y^2 + 9z^2 = 1$$

22.
$$9x^2 + 4y^2 + z^2 = 1$$

23.
$$x^2 - y^2 + z^2 = 1$$

24.
$$-x^2 + y^2 - z^2 = 1$$

25.
$$y = 2x^2 + z^2$$

26.
$$y^2 = x^2 + 2z^2$$

27.
$$x^2 + 2z^2 = 1$$

28.
$$y = x^2 - z^2$$

I

П

Ш

IV

v

VI

VII

VIII

