MA 213 — Calculus III Spring 2018 Exam 1 February 8, 2018

Name:
Section:
Last 4 digits of student ID #:

- No books or notes may be used.
- Turn off all your electronic devices and do not wear ear-plugs during the exam.
- You may use a calculator, but not one which has symbolic manipulation capabilities or a QWERTY keyboard.
- Additional blank sheets for scratch work are available upon request.
- All questions are free response questions.
 Show all your work on the page of the problem. Clearly indicate your answer and the reasoning used to arrive at that answer.
 Unsupported answers may not receive credit.

Exam Scores

Do not write in the table below

Question	Score	Total
1		10
2		10
3		10
4		10
5		10
6		10
7		10
8		10
9		10
10		10
Total		100

1. (10 points) At what points does the curve $\mathbf{r}(t) = t\mathbf{i} + (4t - t^2)\mathbf{k}$ intersect the paraboloid $z = x^2 + y^2$?

2. (10 points) A curve C is represented by the vector function

$$\mathbf{r}(t) = (\cos t)\mathbf{i} + 3t\mathbf{j} + 2\sin(2t)\mathbf{k}.$$

Find the unit tangent vector to C at the point where t = 0.

3. (10 points) Evaluate the limit

$$\lim_{t\to 0} \left(e^t \, \mathbf{i} + \left(\frac{\sin 2t}{t} \right) \mathbf{j} + (\tan t) \mathbf{k} \right).$$

- 4. (10 points) Identify the surface $9y^2 4z^2 = x^2 + 36$ as one of the following types:
 - a. Cylinder
 - b. Ellipsoid
 - c. Elliptic Paraboloid
 - d. Hyperbolic Paraboloid
 - e. Cone
 - f. Hyperboloid of One Sheet
 - g. Hyperboloid of Two Sheets

(10 points) Which of the following four planes are parallel? Are any of them identical? **5**.

$$P_1: 3x + 6y - 3z = 6$$

$$P_1: 3x + 6y - 3z = 6$$
 $P_2: 4x - 12y + 8z = 5$

$$P_3: 9y = 1 + 3x + 6z$$
 $P_4: z = x + 2y - 2$

$$P_4: \quad z = x + 2y - 2$$

(10 points) Determine whether the lines L_1 and L_2 intersect, and if they do, find the 6. point of intersection.

$$L_1: \quad x = -1 + 3t, \qquad y = 3 - t, \qquad z = -3 + 2t$$

 $L_2: \quad x = -3 - 5s, \qquad y = 4 + 2s, \qquad z = -4 - 3s.$

$$L_2: \quad x = -3 - 5s, \quad y = 4 + 2s, \quad z = -4 - 3s.$$

7. (10 points) Find an equation for the plane through the points (0, 1, 2), (1, 0, 2), and (1, 2, 0). Write the equation of the plane in the form 2x + by + z = d.

8. (10 points) Find the volume of the parallelepiped with adjacent edges PQ, PR, and PS, where

$$P = (-2, 1, 0), \quad Q = (2, 3, 2), \quad R = (1, 4, -1), \quad S = (3, 6, 1).$$

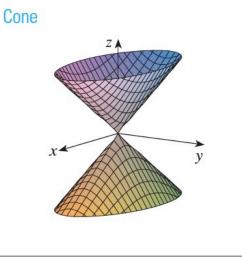
9. (10 points) Find the acute angle between the lines 3x - y = 7 and 2x + y = 3. [An exact answer in radians is expected. Approximate answers will nor receive full credit.]

10. (10 points) Find the work done by a force $\mathbf{F} = 8\mathbf{i} - 6\mathbf{j} + 9\mathbf{k}$ that moves an object from the point (0, 10, 8) to the point (6, 12, 20). The distance is measured in meters and the force in newtons.

Surface		
Ellipsoid		
Elliptic Paraboloid		
Hyperbolic Paraboloid y		

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
All traces are ellipses.
If $a = b = c$, the ellipsoid is a sphere.

Equation

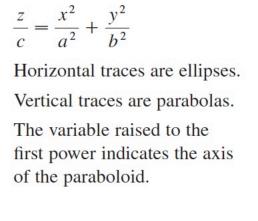


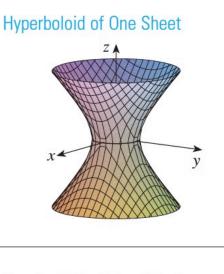
Surface

$$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
Horizontal traces are ellipses.

Vertical traces in the planes
$$x = k \text{ and } y = k \text{ are}$$
hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.

Equation





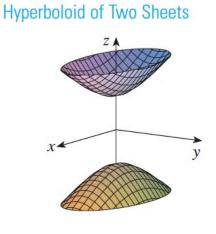
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
Horizontal traces are ellipses.
Vertical traces are hyperbolas.
The axis of symmetry corresponds to the variable whose coefficient is negative.

Horizontal traces are hyperbolas.

Vertical traces are parabolas.

The case where
$$c < 0$$
 is illustrated.

 $\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$



 $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Horizontal traces in z = k are ellipses if k > c or k < -c.

Vertical traces are hyperbolas.

The two minus signs indicate two sheets.