
MA 213 Exam 1 Spring 2020

Name: Section and/or TA:

Last Four Digits of Student ID:

Do not remove this answer page — you will return the whole exam. You will be
allowed two hours to complete this test. No books or notes may be used except for a one-
page sheet of formulas and facts. You may use a graphing calculator during the exam,
but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is
permitted. Absolutely no cell phone use during the exam is allowed.

The exam consists of 10 multiple choice questions and 4 free response questions.
Record your answers to the multiple choice questions on this page by filling in the cir-
cle corresponding to the correct answer.

Show all work to receive full credit on the free response questions. Unsupported an-
swers on free response questioins will receive no credit.

Multiple Choice Questions

1 A1 B1 C1 D1 E

2 A2 B2 C2 D2 E

3 A3 B3 C3 D3 E

4 A4 B4 C4 D4 E

5 A5 B5 C5 D5 E

6 A6 B6 C6 D6 E

7 A7 B7 C7 D7 E

8 A8 B8 C8 D8 E

9 A9 B9 C9 D9 E

10 A10 B10 C10 D10 E

SCORE

Multiple 11 12 13 14 Total
Choice Score

60 10 10 10 10 100
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Multiple Choice Questions

1. (6 points) Which of the following points in R3 lies on the line through P(1, 2, 1) and
Q(7, 0, 3)?

A. (4, 2, 2)

B. (−1, 4, 1)

C. (2, 3, 0)

D. (−2, 3, 0)

E. None of the above

2. (6 points) If a = −2i + j− 2k, b = 3i + 2j + 6k, then the cosine of the angle between
a and b is

A. 5/7

B. 16/21

C. 3/4

D. −16/21

E. −5/7

3. (6 points) Consider the points P(−1, 2, 1) and Q(1, 3,−1). The vector v of magnitude
3 in the direction of

−→
PQ is

A. 〈2, 1,−2〉
B. 〈2,−1, 2〉
C. 〈−2/3, 1/3, 2/3〉
D. 〈2/3, 1/3, 2/3〉
E. 〈2, 1, 2〉

4. (6 points) Consider the vectors a = 〈1, 2, 3〉, b = 〈1,−1,−2〉, and c = 〈2, 1, 4〉. The
scalar triple product (a× b) · c is

A. 3

B. 6

C. 9

D. −9

E. 12
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5. (6 points) If the symmetric equations of a line L are

x + 1
3

=
y− 2

2
= z + 1,

then the parametric equations of L are

A. x = 1 + 3t, y = −2 + 2t, z = 1 + t

B. x = −1− 3t, y = 2− 2t, z = −1 + 6t

C. x = −2 + 3t, y = 3 + 2t, z = −6 + 6t

D. x = 1 + 3t, y = 2 + 2t, z = 1 + t

E. x = −1 + 3t, y = 2 + 2t, z = −1 + t

6. (6 points) Consider the sphere S with equation x2 + y2 + z2 − 2x + 4y = 4. Which
of the following equations represents a sphere with the same center as S but with a
radius twice the radius of S?

A. x2 + y2 + z2 − 2x + 4y = 36

B. x2 + y2 + z2 − 2x + 4y = 32

C. x2 + y2 + z2 − 2x + 4y = 31

D. x2 + y2 + z2 − 2x + 4y = 16

E. x2 + y2 + z2 − 2x + 4y = 8

7. (6 points) Find all the points on the helix

r(t) = 〈4 cos(πt), 4 sin(πt), 9t〉

whose distance from the origin is 5.

A. 〈2, 2
√

3, 3〉
B. 〈2

√
3, 2, 3〉 and 〈2

√
3,−2,−3〉

C. 〈2
√

3,−2, 3〉 and 〈2
√

3, 2,−3〉
D. 〈2, 2

√
3,−3〉 and 〈2,−2

√
3, 3〉

E. 〈2, 2
√

3, 3〉 and 〈2,−2
√

3,−3〉
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8. (6 points) Consider the planes

P1 : x + y + 2z = 0
P2 : 5x + 3y− 4z = 1

and the line
L : x = 5t, y = 1− 7t, z = 3 + t.

Choose the correct statement:

A. L is perpendicular to both P1 and P2

B. L is perpendicular to P1 and parallel to P2

C. L is perpendicular to P2 and parallel to P1

D. L is parallel to both P1 and P2

E. None of the above

9. (6 points) Consider the curve

C : r(t) = 〈t2, t2 + 1, t3 − 1〉.

Which of the following lines is tangent to C at the point (1, 2,−2)?

A. x = 1 + 2t, y = 2− 2t, z = −2 + 3t

B. x = 1− 2t, y = −2− 2t, z = 2 + 3t

C. x = 1− 2t, y = 2− 2t, z = −2 + 3t

D. x = 1 + 2t, y = 2− 2t, z = −2− 3t

E. x = 1− 2t, y = 2 + 2t, z = −2 + 3t

10. (6 points) Consider the triangle with vertices P(5,−1, 4), Q(3, 1, 4), R(3,−1, 6). Which
one of the following statements is correct?

A. ∆PQR is an equilateral triangle

B. ∆PQR is an isosceles triangle

C. ∆PQR is a right triangle, but not isosceles

D. ∆PQR has no equal sides

E. None of the above
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Free Response Questions

11. (10 points) The plane P contains the line

L1 : x = 1− t, y = 3 + t, z = 2t

and is parallel to the line

L2 : x = 4− 3t, y = 3 + 2t, z = 7 + t.

(a) (5 points) Find an equation for the plane P. Write the equation in the form

ax + by + cz + d = 0.

Solution: The normal vector for P must be perpendicular to the direction
vectors of L1 and L2. Thus we take

n =

∣∣∣∣∣∣
i j k
−1 1 2
−3 2 1

∣∣∣∣∣∣ = 〈−3,−5, 1〉.

Thus we can write the equation of P as

−3x− 5y + z + d = 0.

To find d, we note that the point (1, 3, 0) is on L1 and therefore on P. Thus

−3 · 1− 5 · 3 + d = 0,

which gives d = 18 and the equation of P is

−3x− 5y + z + 18 = 0.

(b) (5 points) Find the distance between L2 and P.

Solution: Since the point (4, 3, 7) is on L2, the distance from L2 to P is

| − 3 · 4− 5 · 3 + 7 + 18|√
32 + 52 + 12

=
2√
35

.
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12. (10 points) Knowing that the velocity of a particle moving in space is

v(t) = 〈t, cos(πt), 3t2〉 (t ≥ 0)

and that at t = 0, the particle is at the origin, find the position of the particle at
t = 2.

Solution: If r(t) describes the motion of the particle, we have r′(t) = v(t).
Thus

r(t) =
∫

v(t) dt =
〈

t2

2
,

sin(πt)
π

, t3
〉
+ c.

Since r(0) = 0, we see that c = 0. Thus

r(t) =
〈

t2

2
,

sin(πt)
π

, t3
〉

and
r(2) = 〈2, 0, 8〉 .
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13. (10 points) Find a vector function r(t) parametrizing the curve of intersection of the
cylinder (x− 1)2 + y2 = 1 and the paraboloid z = x2 + y2.

Solution: The projection of the curve onto the xy-plane the circle of radius 1 cen-
tered at (1, 0). Thus we can take x = cos t + 1, y = sin t. Then

z = (cos t + 1)2 + (sin t)2 = 2 + 2 cos t

and
r(t) = 〈cos t + 1, sin t, 2 + 2 cos t〉.
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14. (10 points) Find the length of the curve described by the vector function

r(t) = 〈1, 3t2, 2t3〉 (0 ≤ t ≤ 1).

Solution: We have
r′(t) = 〈0, 6t, 6t2〉.

Thus the length of the curve is∫ 1

0
|r′(t)| dt =

∫ 1

0

√
36t2 + 36t4 dt =

∫ 1

0
6t
√

1 + t2 dt

= 3
∫ 2

1

√
u du =

[
2u3/2

]2

1
= 2(
√

8− 1),

where we used the substitution u = 1 + x2, du = 2x dx.
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