MA 213 Exam 2 Spring 2020

Name: Section and/or TA:

Last Four Digits of Student ID:

Do not remove this answer page — you will return the whole exam. You will be
allowed two hours to complete this test. No books or notes may be used. You may
use a graphing calculator during the exam, but NO calculator with a Computer Algebra
System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during
the exam is allowed.

The exam consists of 10 multiple choice questions and 4 free response questions.
Record your answers to the multiple choice questions on this page by filling in the cir-
cle corresponding to the correct answer.

Show all work to receive full credit on the free response questions. Unsupported an-
swers on free response questioins will receive no credit.
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Multiple Choice Questions

1. (6 points) Which of the following points in R?> does not belong to the domain of

fx,y) =In[(4 = 2*)(y* = 9)]?

2. (6 points) One of the following limits does not exist. Which one?
X

A. lim
(x,y)—(0,0) X + Y

B. lim eV Y
(xy)—(2,1)

4 4
C. lm LY
(xy)—(0,0) X2 + Y2

D. Iim In[(x—1 -1
uw%m)u )y —1)]

£ opm Yyt
C(wy)—(21) X2 —y?

3. (6 points) Compute fy(3,4), if f(x,y) = In(x> — \/x% + 2):
A.1/4
B. 27/14

33/14

33/20

27/20

m O 0
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4. (6 points) Find an equation for the tangent plane to the surface z = ¢¥~* at the point
(2,2,1):

A x+y—z=1
B.x—y—-z=1
Cx—y+tz=1
D x+y+x=1
E.x—y+z=-1

5. (6 points) If x = cost, y = sint, what is the derivative of f(x,y) = x?y® with respect
tot, whent = 1/6?

A0
B
C
D.
E

6. (6 points) If e** = xy, use implicit differentiation to compute g—i at the point (1,1,0)
A. 0

m I 0
[N
N _

7. (6 points) The derivative of f(x,y) = xy(x + y) and the point (1,2) in the direction
of v = 4i + 3j

A. 44/5
B. 9

C. 46/5
D. 47/5
E. 48/5
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8. (6 points) If

and

fx(0,0) = £,(0,0) = fx(1,1) = f,(1,1) =0

fxx(0,0) =2, fyy(0,0) =5, fxy(oro) = fyX(OfO) =3,
fxx(lrl) =2, fyy(lrl) =4, fxy(lll) = fyx(lrl) =3,

then f(x,y) has

. Alocal minimum at (0,0) and a local maximum at (1,1)

A
B. A local maximum at (0,0) and a local minimum at (1,1)
C.
D
E

A saddle point at (0,0) and a local maximum at (1,1)

. Alocal maximum at (0,0) and a saddle point at (1,1)
. A local minimum at (0,0) and a saddle point at (1,1)

9. (6 points) Evaluate

m O N w >

X 1 ! ! y ! y ’
0

/4
/3
/2

s

10. (6 points) Evaluate

m Y N = »

// x>dA, where D isbounded by y = 1 — x*> and y = 0.
D

1/15
2/15
1/5
4/15
1/3
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Free Response Questions

11. (12 points) Use Lagrange multipliers to fine the absolute maximum and absolute
minimum values of f(x,y) = x* + y* on the disk x> + y?> < 4 and the points where
these values are reached. Note: you must use Lagrange multipliers to receive full
credit for this problem.

(a) (2 points) Find the critical point(s) of f(x,y) inside the disk.

Solution: We have Vf(x,y) = (4x3,4y>). Thus the only critical point of
f(x,y) inside the disk is (0,0), where f(0,0) = 0.

(b) (4 points) Turning to the boundary circle, consider first the points where either
X or y is zero.

Solution: The boundary of the disk is the circle x> + y> = 4. If x = 0, we
have y = £2. Similarly, if y = 0, we have x = 2. This gives 4 points

0,2), (0,—2), (2,0), (—2,0).

The value of f(x,y) at all four of these points is 16.

(c) (4 points) Consider the points of the boundary where neither x nor y is zero (use
Lagrange multipliers).

Solution: Since the constraint is g(x,y) = x> +y> = 4 and Vg(x,y) =
(2x,2y), we need to solve for x and y the three equations

4x3 =2)x, 4P =21y, x*+yP=4
assuming that x # 0 and y # 0. From the first two equations we have
A =2x2 = 2y?

and since x2 + yz =4, we get X2 = y2 =2,ie,x =++v2and y= ++/2. This
gives four points

(V2,V2), (V2,-V2), (-V2v2), (-V2,-V2),

and f(x,y) has value 8 at each of these points.
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(d) (2 points) Compare the values of f(x,y) at the points found in (a), (b), and (c),
and determine the points where the absolute maximum and absolute minimum
are reached.

Solution: Comparing now the values of f(x,y) at the 9 points found in (a),
(b), (c), we conclude that f(x,y) has an absolute maximum 16 at

0,2), (0,-2), (2,0), (—2,0)

and an absolute minimum 0 at (0, 0).

12. (8 points) Let f(x,y) = x%e¥
(a) (5 points) Find the linearization L(x,y) of f(x,y) at the point (1,0).

Solution: We have

fe(x,y) =2xe¥,  fy(x,y) = x%e
and therefore
f(l,O) =1, fx(l,O) =2, fy(l,O) =1.

Thus
Lix,y) =1+2(x—1)+1(y—0) =2x+y — 1.

(b) (3 points) Use the linearization found in (a) to approximate f(0.98,0.3).

Solution: We have

£(0.98,0.3) ~ L(0.98,0.3) = 1+ 2(—0.02) + 1(0.3) = 1.26.
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13. (10 points) Let R = {(x,y) |0 <x <2,0<y < (x+1)?},

(a) (4 points) Find the area of R.

Solution: We have

Area(R) = /02 (x+1)2dA = {(le)s}x_o — g

(b) (5 points) Evaluate

//RydA.

Solution: Since R is clearly a region of type I, we have

2 (1) 2 (x + 1) (x+1)577° 121
//RydA_/O/O ydydx_/o 2 dx_[ 10 L_O_T’

(c) (1 point) Find the average value of f(x,y) = y over R.

Solution: We have

1 3 121 363
= — A = —- — = ——
fave = A rea(R) //R VIA=Z 5 = 5
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14. (10 points) Find a vector equation for the normal line to the paraboloid x> + y?> — z =
0 at the point (2, —2,1).

Solution: The gradient of f(x,y,z) = x> +y> —zis
Vi(x,y,z)=(2x,2y,—1).

Thus we can take Vf(2,—-2,1) = (4, —4, —1) as the direction vector n of the nor-
mal line andwe can take

r(t) = (2,-2,1) + {4, —4,—1) = (2+4t, -2 — 4,1 — )

as a vector equation of the normal line.
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