Comprehensive Exam Statistical Inference

June 4, 1997 10:00 am - 12:00 pm

Instructions

- 1. Answer all the questions.
- 2. Number of points each problem carries is indicated in parentheses. Maximum possible score is 100.
- 3. Start each question on a new sheet of paper with your name on it.

1. (16 points) Let $(X_1, ..., X_m)$ be a random sample from normal (μ, σ^2) and $(Y_1, ..., Y_n)$ be a random sample from normal (μ, τ^2) . Assume that the X's and Y's are mutually independent.

independent.

3-dimensional

where. $-\infty < \mu < +\infty$ (a) Obtain a sufficient statistic for (μ, σ^2, τ^2) . $0 < \sigma^2 < +\infty$

- (b) Is the sufficient statistic obtained in (a) complete (justify your answer)?
- 2. (18 points)
 - (a) State all the properties of the maximum likelihood estimates of an unknown parameter (one dimensional case).
 - (b) Find the maximum likelihood estimates of θ and σ based on a random sample $(X_1, ..., X_n)$ from the density

$$f(x; \theta, \sigma) = \frac{1}{\sigma} e^{-(x-\theta)/\sigma}, \qquad x \ge \theta, \quad \sigma > 0$$

= 0 , elsewhere.

- (c) Assuming that θ is known to be equal to zero, obtain the Cramér-Rao lower bound for the variance of any unbiased estimator of σ.
- 3. (16 points) Let $(X_1, ..., X_n)$ be a random sample from the Bernoulli population with unknown parameter p. Assume that p has a prior distribution that is uniform on (0, 1).
 - (a) Obtain the Bayes estimate of p assuming a quadratic loss function.
 - (b) What is the limit of the mean square error of this estimator as n becomes large?

4. (16 points) Suppose that $X_1, X_2, ..., X_n$ are iid with the density

$$f(t) = \begin{cases} \beta (1-t)^{\beta-1}, & \text{for } 0 \le t \le 1\\ 0, & \text{otherwise} \end{cases}$$

where $\beta > 0$ is a parameter.

(a) Based on the random sample $X_1, X_2, ..., X_n$ obtain a most powerful test of

$$H_0: \beta = 1$$

versus

$$H_A: \beta=2.$$

- (b) What is the distribution of your test statistic under H_0 ?
- (c) Find a UMP test of

$$H_0: \beta \leq 1$$

versus

$$H_A: \beta > 1.$$

(justify your answer)

5. (16 points) Suppose that X_1, X_2, X_3 are *iid* Poisson (λ). Independent of that we also have Y_1, Y_2 which are *iid* Poisson (μ). Find a UMPU test of

$$H_0: \lambda \leq \mu$$

versus

$$H_A: \lambda > \mu$$

based on X_1, X_2, X_3, Y_1, Y_2 .

Indicate how you obtain the rejection region for a specified α (probability of type I error).

6. (18 points) Suppose X_i , i = 1, 2, ...n are iid non negative observations such that $\sqrt{X_i}$ has the density

$$f_{\theta}\left(u\right) = \begin{cases} \theta^{2} u e^{-\theta u}; & u > 0 \\ 0 & u \leq 0 \end{cases}$$

where $\theta > 0$ is an unknown parameter.

- (a) Find the MLE of θ and its asymptotic distribution.
- (b) Find a transformation $g(\theta)$ such that its MLE has an asymptotically constant variance (not depending on θ).
- (c) If n = 80 and $\sum_{i=1}^{n} \sqrt{X_i} = 66$, use $\alpha = 0.05$ and obtain a generalized likelihood ratio test for

$$H_0: \theta = 1$$

versus

$$H_A: \theta \neq 1.$$