
Semiparametric Observed Information for
Kaplan-Meier Integrals and Nelson-Aalen Integrals

Mai Zhou
Department of Statistics, University of Kentucky,

Lexington, KY 40536 USA
Email: maizhou@gmail.com

Running Title: Semiparametric Observed Information

1



Abstract

We calculate the semiparametric observed Fisher information for a Kaplan-Meier
integral based on n iid right censored observations. We show that the inverse of
the observed information is equal to the Aalen-Johansen variance estimator of the
Kaplan-Meier. Observed as well as expected semiparametric information for a Nelson-
Aalen integral are also derived. The Cramér-Rao lower bound for the Nelson-Aalen
integral (using expected Fisher information) is only achieved asymptotically. The
least favorable families of distributions for these semiparametric estimation/testing
problems are explicitly identified.
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1 Introduction

The Kaplan-Meier (1958) paper [9] for estimating the survival curve is the most cited
statistical paper in history. Even among all the scientific papers, it is in the top 20.

The Kaplan-Meier estimator are commonly taught in (bio)statistics courses and re-
lated computational software are readily available. Among the important properties of the
estimator, it is known that the Kaplan-Meier estimator is consistent and asymptotically
efficient. However, the efficient result for the Kaplan-Meier needs some math backgrounds
usually not available in master level courses. For example, the càdlàg functions and D[0, τ ]
space. Also, this is an asymptotic result so that the limit of stochastic processes and Brow-
nian motion or Gaussian Process are essential. See the convolution theorems in Bickel,
Klaassen, Ritov and Wellner (1993), Wellner (1982).

A more interesting situation is to estimate a finite dimensional parameter of interest
within a nonparametric model. Usually, those models are called semiparametric models.
For many examples of semiparametric models, see Chapter 3 and 4 of Bickel, Klaassen,
Ritov and Wellner (1993); Chapter 25 of van der Vaart (1998); Chapter 4 of Kosorok
(2008) and Chapter 4 and 5 of Tsiatis (2006). The information lower bound for estimating
a finite dimensional parameter, while having an infinite dimensional nuisance parameter,
is a major topic discussed in the above books.

While the above books all discussed the expected information for large n, we shall
compute the observed information for fixed n here with the Kaplan-Meier integrals, and
observed as well as expected information for the Nelson-Aalen integrals.
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Observed Fisher information calculations for classic parametric models are common [6].
For semiparametric models, Murphy and van der Vaart (1999) [23], working on the profile
likelihood, show that discrete derivatives can be used to calculate a consistent observed
information.

We follow the scheme of Stein (1956) [14] in which the semiparametric information is
defined by the infimum of all informations for the parametric sub-models contained in the
nonparametric model. Our approach presented in this paper works with finite dimensional
estimators in the form of the Kaplan-Meier integrals and we never need to work with
limit for n → ∞. We show that the observed Fisher information for the Kaplan-Meier
integrals can be calculated for fixed sample size n. Moreover, we find that the Aalen-
Johansen variance estimator of the Kaplan-Meier equals to the inverse of the observed
Fisher information. This is a ‘sample version’ of the Cramér-Rao lower bound been reached.
The actual Cramér-Rao lower bound (using expected information) for finite n is unknown
to this author. However, asymptotically, the lower bound is reached.

Furthermore, the least favorable family of distributions for the semiparametric estima-
tion problem are explicitly identified.

Parallel results on observed information for the Nelson-Aalen integrals are also obtained.
In addition, with the help of counting process martingale tools, we also calculated the
semiparametric expected Fisher information for the the Nelson-Aalen integrals. It turns out
that the Nelson-Aalen integrals only reach the Cramér-Rao lower bound in the asymptotic
sense.

In parametric likelihood analysis, the observed Fisher information may give rise to a
better normal approximation for the distribution of the Maximum Likelihood Estimator
(than using the expected information), see Efron and Hinkley (1978). Similar phenomena
also occur in other estimation problems, see Lindsay and Li (1997), Walker (1987), Tierney
and Kadane (1986), and Savalei (2010) among others. Therefore calculating observed
information is useful even if the expected information is available. A key difference is that
the expected information is non-random, while the observed information is data dependent
and thus random.

We also identified in this paper the least favorable parametric sub-model for estimating
the Kaplan-Meier integrals (also for the Nelson-Aalen integrals). Those parametric family of
distributions are very useful in a number of places: see for example DiCiccio and Romano
(1990) for calculating nonparametric re-sampling confidence limits. The least favorable
family is also intimately connected to the empirical likelihood analysis (Owen, 2001, Ch. 9);
and useful in the semiparametric Bayesian analysis. Roughly speaking, the least favorable
family reduces the semiparametric estimation/testing problem to a parametric problem.
We shall not pursue these topics here.

We end this section with some notation and definition. For n iid right censored obser-
vations: (Ti, δi) i = 1, 2, · · · , n, where Ti = min(Xi, Ci), δi = I[Xi ≤ Ci], we assume the
lifetimes Xi are iid with CDF F (t) and the censoring variable Ci is independent of Xi. We
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assume F (t) is continuous but the distribution G(t) of Ci can have jumps.

The nonparametric likelihood function for F based on the n iid right censored observa-
tions is (see for example, Kaplan and Meier 1958):

L(F ) =
∏
δi=1

∆F (ti)
∏
δi=0

[1− F (ti)] . (1)

Kaplan and Meier (1958) also showed that among all CDFs, continuous or discrete, the
one CDF that we now call the Kaplan-Meier estimator maximizes the above likelihood:

1− F̂km(t) =
∏
s≤t

(
1− ∆N(s)

R(s)

)
, (2)

where N(t) =
∑n

i=1 I[Ti ≤ t, δi = 1], R(t) =
∑n

i=1 I[Ti ≥ t].

Therefore, the Kaplan-Meier estimator is a nonparametric maximum likelihood estima-
tor (NPMLE). The difference between NPMLE and regular MLE’s is that the parameter
here is the entire CDF (infinite dimensional), and regular MLEs are for finite dimensional
parameters.

2 Information for the Kaplan-Meier Integrals

The Kaplan-Meier estimator is an estimator of the unknown distribution (survival) function
F (t) which is infinite dimensional. We instead will look at the Kaplan-Meier integrals of a
given functions g(t). We first look at just one single integral case.

2.1 Information Number

One way to extract a one-dimensional feature out of the infinite dimensional CDF F (t), is
to take a linear functional

µ =

ˆ
g(t)dF (t) . (3)

For example the mean µ of the CDF is a one-dimensional parameter. Here g(t) is a function
we pick to extract the feature we want. If g(t) = I[t ≤ 3] then the one-dimensional feature
is F (3); if g(t) = t then the feature is the mean value of F , etc.

We want to compute the observed information contained in the censored data likelihood
L(F ), defined in (1), at F = F̂km, for estimating µ.

It is well known that the observed information is related to the (negative) second deriva-
tive of the log likelihood, i.e. we need to compute the second derivative of logL(F ) at

4



F = F̂km. According to Stein (1956) [14] this computation can be done first for a 1-
parametric sub-family of distributions contained in the nonparametric model and then
minimize over all such sub-families.

We shall compute the derivative of logL(F ) with respect to µ as a composite function
as follows:

logL(F ) = logL(Fλ(µ)) ,

with Fλ and λ(µ) to be defined below.

Since we only need to compute the derivative at F = F̂km, we define a parametric
sub-family of distributions that passing through F̂km:

∆Fλ(ti) = ∆F̂km(ti)[1− λf(ti)] , i = 1, · · · , n ; (4)

where the parameter λ ∈ (−a, a) for some a > 0. Clearly, when λ = 0 the distribution
Fλ=0 goes back to F̂km. We are going to compute the derivative at F = F̂km i.e. λ = 0.

Similar parametric sub-family of distributions like (4) were used by Bickel, Klaassen,
Ritov and Wellner (1993) Chapter 3, and van der Vaart (1998) page 364, among others.
Intuitively, λ is the magnitude of change and f is the direction of change of Fλ away from
the Kaplan-Meier F̂km in the relation (4).

Since
∑n

i=1 ∆Fλ(ti) must be one (for all λ) as is true for all CDFs, we must require f(ti)
in (4) to satisfy

n∑
i=1

f(ti)∆F̂km(ti) = 0. (5)

We also assume 0 <
∑n

i=1 f
2(ti)∆F̂km(ti) <∞.

First, we look at the function λ = λ(µ). Since the specific one-dimension feature we are
looking at is µ =

´
g(t)dF (t), this leads toˆ

g(t)dFλ(t) =

ˆ
g(t)[1− λf(t)]dF̂km(t) = µ .

Or, re-arrange terms and write it as a sum, we get an equation for λ

λ
n∑
i=1

g(ti)f(ti)∆F̂km(ti) =
n∑
i=1

g(ti)∆F̂km(ti)− µ .

λ =

∑n
i=1 g(ti)∆F̂km(ti)− µ∑n
i=1 g(ti)f(ti)∆F̂km(ti)

. (6)

Therefore,

∂λ

∂µ
=

[
−

n∑
i=1

g(ti)f(ti)∆F̂km(ti)

]−1

,
∂2λ

(∂µ)2
= 0 .
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Next, we compute the partial derivative of logL(Fλ) with respect to λ. We first substi-
tute F in the likelihood (1) by Fλ and then take the derivatives.

Let us denote
u(λ)

def
= logL(Fλ) .

It is easy to check (we do not need it here, but it is reassuring) that u
′
(0) = 0. With-

out calculation, we can also explain why u
′
(0) = 0: this log likelihood u(λ) achieves its

maximum value at λ = 0 (the Kaplan-Meier), therefore the derivative at λ = 0 must be 0.

Definition: (Advanced times) For any function g(s) and CDF F (s), the advanced time
transformation ḡ(s) is defined by

ḡ(s) =

´
(s,∞)

g(x)dF (x)

1− F (s)
. (7)

Actually, we should probably write it as ḡF (s) instead of ḡ(s) since the definition uses
F . What we use in this paper, is for F = F̂km. The references of the advanced time are
Efron and Johnstone (1990) and Akritas (2000).

Long and tedious calculation/simplification show (see Appendix for details)

u
′′
(0)

n
= −

n∑
i=1

[f(ti)− f̄(ti)]
2[1− Ĝkm(ti−)]∆F̂km(ti) ,

where Ĝkm is the Kaplan-Meier estimator of the censoring distribution, defined similarly
by (2) except replacing N(t) by Nc(t) =

∑
i I[Ti ≤ t, δi = 0]. Notice we used the ‘advanced

time’ f̄(·) above.

Putting the two derivatives together, by the chain rule, the second derivative of logL(F )
with respect to µ (at λ = 0, or equivalently at F̂km) is

∂2 logL(F )

(∂µ)2
|λ=0 =

−n
∑

i[f(ti)− f̄(ti)]
2[1− Ĝkm(ti−)]∆F̂km(ti)

[
∑

i g(ti) f(ti)∆F̂km(ti)]2
. (8)

For further simplifications we need to use the variance/covariance identity of advanced-
times (see Lemma 1 in Appendix). Using Lemma 1, we can write the derivative (8) as

∂2 logL(F )

(∂µ)2
|λ=0 =

−n
∑

[f(ti)− f̄(ti)]
2[1− Ĝkm(ti−)]∆F̂km(ti){∑

[g(ti)− ḡ(ti)] [f(ti)− f̄(ti)]∆F̂km(ti)
}2 . (9)

Finally by the Cauchy-Schwarz inequality (see Lemma 2 in Appendix) we find the
minimum (or infimum) over all f of the second order derivative

inf
f

− ∂2 logL(F )

(∂µ)2
|λ=0 =

n∑n
i=1

[g(ti)−ḡ(ti)]2
1−Ĝkm(ti−)

∆F̂km(ti)
= J (µ, F̂km) . (10)
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This is the “observed Fisher information”, denoted by J (µ, F̂km), for estimating µ, at
λ = 0 or at F = F̂km, obtained using Stein’s (1956) method. May be this result deserve
to be stated separately as a Theorem, indeed this is just a special case for the Theorem 1
later for r ≥ 1 parameters.

In the above calculation when we use the Cauchy-Schwarz inequality to find the infimum,
it also gives an easy way to identify the f that achieves the infimum in (10). This f
have the smallest information and thus also gives rise to the ‘least favorable’ sub-family of
distributions via (4). For definition and more discussion and applications of ‘least favorable’
subfamily of distributions, see Stein (1956), Bickel, Klaassen, Ritov and Wellner (1993),
van der Vaart (1998), DiCiccio and Romano (1990), Owen (2001), or Efron and Tibshirani
(1993) section 22.7. This least favorable f satisfies

f(ti)− f̄(ti) ∝
g(ti)− ḡ(ti)

1− Ĝkm(ti−)
, (a.s. F̂km).

Remark: Given g(·), we can use the above to determine f(ti) recursively starting from
the last observation.

Example 1: Notice the Kaplan-Meier estimator F̂km(τ0) can be obtained as the integral

F̂km(τ0) =

ˆ
I[x ≤ τ0]dF̂km(x) ,

similar to (3) with a function g(x) = I[x ≤ τ0]. Here µ = F (τ0) =
´
I[t ≤ τ0]dF (t).

The observed information (for µ =
´
gdF ) we obtained on the right hand side of (10),

is

J =

(
n∑
i=1

[g(ti)− ḡ(ti)]
2

1− Ĝkm(ti−)

∆F̂km(ti)

n

)−1

. (11)

Plug g(x) = I[x ≤ τ0] into (11) we see that

g(ti)− ḡ(ti) =

{
0, if ti > τ0;

1− F̂km(τ0)−F̂km(ti)

1−F̂km(ti)
, if ti ≤ τ0

and we have

[g(ti)− ḡ(ti)]
2 =

{
0, if ti > τ0;
[1−F̂km(τ0)]2

[1−F̂km(ti)]2
, if ti ≤ τ0 .

The observed information for estimating µ = F (τ0), at F̂km is thus

J (F (τ0)) =

(
[1− F̂km(τ0)]2

∑
ti≤τ0

1

1− Ĝkm(ti−)

∆F̂km(ti)

n[1− F̂km(ti)]2

)−1

. (12)
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After some simplification, we finally have

J (F (τ0)) =

(
[1− F̂km(τ0)]2

∑
ti≤τ0

∆N(ti)

(R(ti)−∆N(ti))2

)−1

. (13)

On the other hand, the Greenwood formula for estimating the variance of the Kaplan-
Meier estimator F̂km(τ0) is

Greenwood = [1− F̂km(τ0)]2
∑
ti≤τ0

∆N(ti)

R(ti)(R(ti)−∆N(ti))
. (14)

However, aside from the popular Greenwood, there are several alternative estimators of the
variance also proposed and studied in the literature, see for example [10] and [21] and [22].
We would like to highlight one of the modifications of Greenwood: the variance estimator
of Aalen-Johansen (1978) [1]:

Aalen-Johansen = [1− F̂km(τ0)]2
∑
ti≤τ0

∆N(ti)

(R(ti)−∆N(ti))2
. (15)

Recently, [22] compared ten different estimators of Var(F̂km(τ0)) by simulations. They
found the Greenwood tend to under estimate the true variance, particularly when τ0 at the
tail of the distribution. Apparently Aalen-Johansen > Greenwood. But the difference is
small and as sample size increases, if the underlying survival distribution is continuous, the
difference goes to zero.

Compare (13) and (15), we have shown the equality

1

J (F (τ0))
= Aalen-Johansen . (16)

We wanted to point out that the equality above “almost” state that the Kaplan-Meier
estimator reached the Cramér-Rao lower bound for variances of unbiased estimators. We
term this a ‘sample version’ of the lower bound been reached.

The reasons we say “almost” are

(1) In the ‘real’ Cramér-Rao lower bound, we should be using the expected in-
formation and the true variance of an estimator. Here the observed information
is only an estimator of the expected information and the Aalen-Johansen is only
an estimated variance of the Kaplan-Meier.

Nevertheless, these are good estimators of their true values, and so at least we
have shown the Cramér-Rao lower bound is approximately reached for finite n
and asymptotically the Cramér-Rao lower bound is reached.

(2) The Kaplan-Meier estimator may not be an unbiased estimator in general.
But we know the bias is extremely small and this is not too much of a concern.
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Therefore, this serves as a good evidence that the variance of F̂km(τ0) is as small as it
can be in the Cramér-Rao sense — i.e. efficient.

Remark Akritas (2000) showed that the Kaplan-Meier integrals are asymptotically
normally distributed with a variance σ2. If the lifetimes Xi have a continuous distribution
F (t), we can easily see that (asymptotically reaching the lower bound)

lim
n→∞

n

J (µ, F̂km)
= σ2 .

2.2 Information Matrix

We may extract a finite number, r, of features from a CDF with r integrals. The r (r ≥ 1)
parameters are µ = (µ1, · · · , µr) which are defined as

(µ1, · · · , µr) =

(ˆ
g1(t)dF (t), · · · ,

ˆ
gr(t)dF (t)

)
.

We denote g(t) = (g1(t), · · · , gr(t)), and µ = (µ1, · · · , µr).
The calculation of observed information matrix is similar to the one parameter case.

We only give an outline here.

We define the r-parameter subfamily of distributions as

∆Fλ(ti) = ∆F̂km(ti)[1− λ · f(ti)] , i = 1, · · · , n . (17)

where λ = (λ1, · · · , λr) and f(t) = (f1(t), · · · , fr(t)) and the product λ · f(ti) is the
inner product

∑r
k=1 λkfk(ti). We require ∀k = 1, · · · , r;

∑
i fk(ti)∆F̂km(ti) = 0 due to

the condition of summation to one for probability (Fλ as a probability). We also require
0 <

∑
f 2
k (ti)∆F̂km(ti) <∞ to rule out f ≡ 0.

Let us define three r × r matrices:

Σ = (σuv) =

(
n∑
i=1

[gu(ti)− ḡu(ti)][gv(ti)− ḡv(ti)]
∆F̂km(ti)

1− Ĝkm(ti−)

)
, (18)

A = (auv) =

(
n∑
i=1

[gu(ti)− ḡu(ti)][fv(ti)− f̄v(ti)]∆F̂km(ti)

)
,

B = (buv) =

(
n∑
i=1

[fu(ti)− f̄u(ti)][fv(ti)− f̄v(ti)][1− Ĝkm(ti−)]∆F̂km(ti)

)
.
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We first take the partial derivatives of logL(F ) with respect to λ and (after simplifica-
tions) get

∂2 logL(F )

∂λu∂λv
|λ=0 = −nB .

The r parameters for the subfamily of distributions defined in (17) are calculated as

n∑
i=1

gk(ti)[1− λ · f(ti)]∆F̂km(ti) = µk , k = 1, · · · , r.

This can be written as (recall
∑
fk(ti)∆F̂km(ti) = 0, and Lemma 1)

Aλ = τ − µ

where τ = (τ1, · · · , τr) and τk =
∑n

i=1 gk(ti)∆F̂km(ti)). Taking partial derivative in the
above equation with respect to µ, we see

∂λ

∂µ
= −A−1 ,

∂2λ

(∂µ)2
= 0 .

Direct calculation (see Appendix) show the negative of the second derivative matrix of
logL(F ) with respect to µ is

n(A−1)>BA−1 .

By the matrix version of the Cauchy-Schwarz inequality (see Appendix), we can show

inf
(f1,··· ,fr)

n(A−1)>BA−1 = n Σ−1
. (19)

We summarize the above results into the following theorem.

Theorem 1 Suppose we have n iid right censored observations (Ti, δi) as specified in
section 1. The nonparametric likelihood function for F (t), based on the n iid (Ti, δi), is
given by (1). Define r ≥ 1 parameters (µ1, · · · , µr) by (

´
g1(t)dF (t), · · · ,

´
gr(t)dF (t))

where gk(t) are given functions.

Then the observed Fisher information matrix for estimating (µ1, · · · , µr) at F = F̂km is

J (µ, F̂km) = nΣ−1
,

where Σ is defined in (18), and F̂km is the Kaplan-Meier estimator.

Furthermore, the least favorable subfamily of distributions for estimating µ is given by
(17) with the f specified by

fk(ti)− f̄k(ti) ∝
gk(ti)− ḡk(ti)
1− Ĝkm(ti−)

, i = 1, · · · , n; k = 1, · · · , r; (a.s. F̂km) ,

where f̄ and ḡ are advanced times with respect to F̂km. �
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3 Information for the Nelson-Aalen Hazard Integrals

The calculations of the information number for the parameter θ =Nelson-Aalen integrals
are easier since the jumps of a discrete cumulative hazard do not have to sum to one,
and counting process martingale tools are readily available. For the observed information,
the calculation is carried out in subsection 3.1. We also compute in subsection 3.2 the
expected information for the hazard integrals, defined as (infimum over submodels of) the
expectation of the square of the first derivative of the log likelihood.

3.1 Observed information number

Given the same n iid right censored data as described in section 1, the infinite dimensional
parameter here is the unknown cumulative hazard function, Λ(t), of the lifetimes Xi. A
one dimensional feature θ of the Λ(t) is defined byˆ

g(t)dΛ(t) = θ (20)

where we assume the function g(t) is such that the integral is finite.

The Poisson log likelihood for Λ(t), based on the n iid right censored data (Ti, δi) and
assuming the Λ is discrete, can be written as (see for example Zhou (2016) page 23 equation
(2.2) and page 24 equation (2.3)):

logL1(Λ) =
n∑
i=1

(
∆N(ti) log ∆Λ(ti)−

n∑
j=1

∆Λ(tj)I[tj ≤ ti]

)
, (21)

where N(t) and R(t) were defined previously near equation (2). The NPMLE of Λ(t) here
is the Nelson-Aalen estimator,

Λ̂na(t) =
∑
ti≤t

∆N(ti)

R(ti)
.

For a given h(t), 1 we define a parametric subfamily of cumulative hazard functions,
Λλ(t), by its jumps

∆Λλ(ti) = ∆Λ̂na(ti)[1− λh(ti)] . (22)

When λ = 0, we have Λλ = Λ̂na. We want to compute the derivatives at λ = 0.

For this subfamily of cumulative hazard functions, the parameter θ defined above is
then

θ =
n∑
i=1

g(ti)∆Λ̂na(ti)− λ
n∑
i=1

g(ti)h(ti)∆Λ̂na(ti) .

1In fact this function can be random, but must be predictable.
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From the above equation, we have

∂λ

∂θ
=

{
−

n∑
i=1

g(ti)h(ti)∆Λ̂na(ti)

}−1

,
∂2λ

(∂θ)2
= 0 .

To calculate the derivative of logL1(Λ) with respect to λ, at λ = 0, we first write out
the log likelihood using the parametric subfamily of hazard functions specified above. Then
direct calculation show

∂2 logL1(Λλ)

(∂λ)2
|λ=0 = −

n∑
i=1

h2(ti)∆N(ti) = −
n∑
i=1

h2(ti)R(ti)∆Λ̂na(ti) .

By the chain rule, the second order derivative of logL1(Λ) with respect to θ, at Λ = Λ̂na

or at λ = 0, is

∂2 logL1(Λ)

(∂θ)2
|λ=0 =

−
∑n

i=1 h
2(ti)R(ti)∆Λ̂na(ti)[∑n

i=1 g(ti)h(ti)∆Λ̂na(ti)
]2 .

Finally, using the Cauchy-Schwarz inequality, we see

inf
h
− ∂

2 logL1(Λ)

(∂θ)2
|λ=0 =

1∑n
i=1

g2(ti)∆Λ̂na(ti)
R(ti)

. (23)

We shall call this the (semiparametric) observed information (for parameter θ at Λ̂na).

The h that achieve the infimum in (23) is least favorable. The least favorable subfamily
of distributions for the estimation problem at hand is given by (22) with an h function
satisfy

h(ti) ∝
g(ti)

R(ti)
, (a.s. Λ̂na). (24)

Theorem 2 Suppose we have n iid right censored observations (Ti, δi) as specified in
section 1. The nonparametric (Poisson version of) log likelihood based on the right censored
observations for the unknown cumulative hazard function Λ(t) (of Xi) is given as in (21).

Define a parameter θ by θ =
´
g(t)dΛ(t) for a given function g(t). Then the observed

Fisher information contained in the log likelihood (21) for estimating θ, at Λ = Λ̂na is

J (θ, Λ̂na) =

{
n∑
i=1

g2(ti)∆Λ̂na(ti)

R(ti)

}−1

,

where Λ̂na(t) is the Nelson-Aalen estimator and R(t) is defined in section 1.
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The least favorable subfamily of cumulative hazard functions for estimating θ is given
by (22) with h satisfy (24). We want to point out that this least favorable f is a predictable
function.

A multi-parameter version of this theorem is straightforward. We omit to save space.
�

We recall that the NPMLE of the parameter θ based on the Nelson-Aalen estimator is
θ̂ =
´
g(t)dΛ̂na(t). And its variance can be estimated by

n∑
i=1

g2(ti)∆N(ti)

[R(ti)]2
, (25)

see for example Aalen (1978), Klein (1991) [10].

We want to point out that:{
J (θ, Λ̂na)

}−1

=
{

Aalen variance estimator (25) for θ̂ =
´
g(t)dΛ̂na(t)

}
.

This almost says the estimator θ̂ reached the Cramér-Rao lower bound, except these are the
estimators of the true variance and estimator of the expected information. Same comments
for the Kaplan-Meier observed information (section 2.1) also apply here.

3.2 Expected information

As a comparison we compute the expected semiparametric information in logL(Λ) for
estimating θ =

´
g(t)dΛ(t). Assume the true model (or true cumulative hazard function)

Λ0(t) is continuous.

The expected information is related to the derivative of logL(Λ) at the true parameter,
therefore we define a submodel passing through the true model Λ0, indexed by a finite
parameter η ∈ R, by

dΛη(t) = dΛ0(t)[1− ηh(t)] . (26)

Please note, the derivatives here need to be computed at the true Λ0 which is assumed
continuous. While the observed information is based on the derivatives computed at Λ̂na

which is discrete. Therefore the log likelihood we use in section 3.1 for observed information
is (21), assuming discrete Λ. The log likelihood we use here for expected information is
(27) below, which is the Poisson log likelihood without the discrete assumption (see Zhou
(2016) page 23, equation (2.1)):

logL2(Λ) =
n∑
i=1

∆N(ti) log dΛ(ti)−
n∑
i=1

Λ(ti) . (27)
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The first derivative of logL2(Λη) with respect to η at η = 0 is

∂

∂η
logL2(Λη)|η=0 = −

n∑
i=1

h(ti)∆N(ti) +
n∑
i=1

ˆ ti

0

h(u)dΛ0(u) .

Exchange the order of summation and integral in the second term on the right, we have

∂

∂η
logL2(Λη)|η=0 = −

ˆ ∞
0

h(t)dN(t) +

ˆ ∞
0

R(u)h(u)dΛ0(u)

= −
(ˆ ∞

0

h(t)d

[
N(t)−

ˆ t

0

R(u)dΛ0(u)

])
= −M(∞) . say

Notice the expression inside the square bracket of the last integral above is a counting
process martingale M+(t), thus the whole integral is also a martingale evaluated at infinity,
provided h(t) is a predictable function.

On the other hand, if we multiply g(t) on both side of the equation (26) and integrate,
we have

θ = θ0 − η
ˆ
h(t)dΛ0(t) .

Consequently, we see that the derivative

∂η

∂θ
=

−1´
g(t)h(t)dΛ0(t)

.

Combine the two derivatives using chain rule, we obtain the (first) derivative of logL2 with
respect to θ.

∂ logL2(Λη)|η=0

∂η

∂η

∂θ
=

M(∞)´
g(t)h(t)dΛ0(t)

.

The variance of this derivative gives the expected information for the particular submodel
of cumulative hazards defined in (26).

The variance or second moment of it can be computed by first compute the predictive
variation process of the martingale, then taking an expectation of the predictive variation:
i.e. VarM(∞) = E 〈M(∞)〉. Therefore the second moment of the numerator above is

E
ˆ ∞

0

h2(t)R(t)dΛ0(t) =

ˆ ∞
0

h2(t)n[1− F0(t−)][1−G0(t−)]dΛ0(t) .

Thus the expected information number for this sub-model is
´∞

0
h2(t)n[1− F0(t−)][1−G0(t−)]dΛ0(t)[´∞

0
g(t)h(t)dΛ0(t)

]2 .
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The semiparametric expected information number is defined (see for example Stein
(1953)) as the infimum over all sub-models of the above information. In view of the above
calculations, we have

Ie(θ,Λ0) = inf
h

´∞
0
h2(t)n[1− F0(t−)][1−G0(t−)]dΛ0(t)[´∞

0
g(t)h(t)dΛ0(t)

]2
=

[ˆ ∞
0

g2(t)dΛ0(t)

n(1− F0(t−))(1−G0(t−))

]−1

.

where the last equality is due to the Cauchy-Schwarz inequality.

The h function that achieves the infimum represents the sub-model with smallest infor-
mation. Thus the least favorable subfamily is given by (26) with

h(t) ∝ g(t)

n(1− F0(t−))(1−G0(t−))
, (a.s. Λ0) . (28)

Theorem 3 Suppose we have n iid right censored observations (Ti, δi) as specified in
section 1. Assume the true cumulative hazard function Λ0(t) of lifetimes Xi is continu-
ous. The nonparametric (Poisson version of) log likelihood based on the right censored
observations for a cumulative hazard function Λ(t) is given in (27).

Define a parameter θ by θ =
´
g(t)dΛ(t) for a given function g. Then the semiparametric

expected Fisher information contained in the log likelihood (27) for estimating θ, at true
model Λ0 is

Ie(θ,Λ0) =

{ˆ
g2(t)dΛ0(t)

n(1− F0(t−))(1−G0(t−))

}−1

,

where F0(t) is the true lifetime distribution, G0(t) is the true censoring distribution.

The least favorable subfamily of cumulative hazard functions for estimating θ is given
by (26) with an h function satisfy (28).

A multi-parameter version of this theorem is straightforward. �

Is the Cramér-Rao Lower Bound being reached here? On the other hand, the
variance of the Nelson-Aalen integral can be calculated as the mean of the martingale
predictable variation process

Var(

ˆ
gdΛ̂na) = E

ˆ
g2(t)dΛ0(t)

R(t)
.

Since

E
1

R(t)
≥ 1

ER(t)
and ER(t) = n(1− F0(t−))(1−G0(t−)) ,
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we see that the Nelson-Aalen integral has a variance that is larger than the Cramér-Rao
information lower bound2. But the two are fairly close. Since as n → ∞, n/R(t) has a
non-random limit, the lower bound is attained asymptotically. This can also be confirmed
by the martingale central limit theorem for

√
n
´
g(t)d(Λ̂na(t) − Λ0(t)) and inspect the

asymptotic variance.

4 Appendix

Lemma 1 (Variance/Covariance identity using advanced time) We have, for any g(t) and
any CDF F ˆ

[g(t)− Eg]2dF (t) =

ˆ
[g(t)− ḡ(t)]2dF (t) ,

where Eg =
´
g(t)dF (t), provided these integrals are well defined. Similarly, we have a

covariance identity (where h(t) is another function):

ˆ
[g(t)− Eg][h(t)− Eh]dF (t) =

ˆ
[g(t)− ḡ(t)][h(t)− h̄(t)]dF (t) .

Proof: The variance identity was proved in Efron and Johnstone (1990). The covariance
identity can be similarly proved, see their equation (2.5). �

Lemma 2 Integral version of the Cauchy-schwarz inequality:

ˆ
Ω

ξ2(x)w2(x)dv

ˆ
Ω

η2(x)

w2(x)
dv ≥

[ˆ
Ω

ξ(x)η(x)dv

]2

here dv is a measure on Ω and w 6= 0. The inequality becomes an equality if and only if
(aside from a multiplicative constant) ξw = η/w (a.s. dv).

Lemma 3 (Matrix Cauchy-Schwarz Inequality) For matrices A, B and Σ defined in
section 2, we have, for any f(t) = (f1(t), · · · , fr(t)) as defined before,

(A−1)>BA−1 ≥ Σ−1

where ≥means the matrix inequality for positive definite matrices. The equality is achieved
when, for k = 1, · · · , r

fk(t)− f̄k(t) =
gk(t)− ḡk(t)
1− Ĝkm(t−)

, (a.s. F̂km) .

2Since 1/x is strictly convex, by Jensen inequality as long as n/R(t) is not a constant, the information
lower bound is strictly smaller.
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Proof: See Tripathi (1999) for a proof of the matrix Cauchy-Schwarz inequality. �

Next we give some details in calculating the second derivative, u
′′
(0). We restrict the

calculation for a single parameter. The r parameter case is similar. Substitute F = Fλ into
the log empirical likelihood, we have

logL(Fλ) =
∑
δi=1

log ∆F̂km(ti)[1− λf(ti)] +
∑
δi=0

log

∑
sj>ti

∆F̂km(sj)[1− λf(sj)]

 .

The second derivative of u(λ) = logL(Fλ) at λ = 0 can be calculated

− u
′′
(0)

n
=

n∑
i=1

f 2(ti)
δi
n

+
n∑
i=1

1− δi
n

(∑
tj>ti

f(tj)∆F̂km(tj)
)2

[1− F̂km(ti)]2
.

Leave the second sum on the right hand side unchanged and apply the self-consistency
identity (Lemma 27 of Zhou (2016)) to the first sum on the right hand side, we have

=
n∑
i=1

f 2(ti)∆F̂km(ti)−
n∑
i=1

1− δi
n

∑
tj>ti

f 2(tj)∆F̂km(tj)

1− F̂km(ti)

+
n∑
i=1

1− δi
n

(∑
tj>ti

f(tj)∆F̂km(tj)
)2

[1− F̂km(ti)]2
.

The two sums with 1−δi can be combined into one sum and the terms for each i become
the variance of f with respect to the (conditional) distributions: Pi = ∆F̂km(tj)/[1 −
F̂km(ti)], tj > ti. Therefore

=
n∑
i=1

f 2(ti)∆F̂km(ti)−
n∑
i=1

1− δi
n

∑
tj>ti

[f(tj)− Eif ]
2

∆F̂km(tj)

1− F̂km(ti)
,

where Ei denote the expectation with respect to the conditional distribution Pi. Notice
that Eif = f̄(tj), where the advanced time is defined using the Kaplan-Meier.

The first sum above can also be written as a variance (with respect to the Kaplan-Meier),
since

∑
f(ti)∆F̂km(ti) = 0. From here, we use the advanced time identity to re-write the

variances and get

=
n∑
i=1

[
f(ti)− f̄(ti)

]2
∆F̂km(ti)−

n∑
i=1

1− δi
n

∑
tj>ti

[
f(tj)− f̄(tj)

]2
∆F̂km(tj)

1− F̂km(ti)
.
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We then use the self-consistency identity for the Kaplan-Meier again to reduce the above
to

=
n∑
i=1

[
f(ti)− f̄(ti)

]2 δi
n
.

The final step is using the identity (see bottom of page 72, Zhou (2016))

∆F̂km(ti) =
δi

n(1− Ĝkm(ti−))

to get

− u
′′
(0)

n
=

n∑
i=1

[
f(ti)− f̄(ti)

]2 [
1− Ĝkm(ti−)

]
∆F̂km(ti) .

�
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