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1. INTRODUCTION

Since Cox (1972), the following Cox’s proportional hazards regression model has become

one of the most widely used tools in analyzing survival data:

(1.1) λ(t; z) = λ0(t) exp(zTβ0),

where Z is a p -dimensional vector of covariates, β0 is the regression parameter, and λ(t; z)

is the conditional hazard function of continuous random variable (r.v.) X given Z = z

with λ0(t) as an arbitrary baseline hazard function. Suppose that (X1, Z1), · · · , (Xn, Zn) is

a random sample of (X,Z), and the actually observed censored survival data are

(1.2) (V1, δ1, Z1), (V2, δ2, Z2), · · · , (Vn, δn, Zn),

where Vi = min{Xi, Yi}, δi = I{Xi ≤ Yi}, and Yi is the right censoring variable with distri-

bution function (d.f.) FY and is independent of (Xi, Zi) or independent of Xi given Z = Zi.

Then, Cox’s partial likelihood estimator β̂c for β0 is given by the solution of equations:

(1.3) ϕn(β) ≡ n−1

n∑
i=1

δi

(
Zi −

∑n
j=1 I{Vj ≥ Vi}Zj exp(ZT

j β)∑n
j=1 I{Vj ≥ Vi} exp(ZT

j β)

)
= 0,

see Tsiatis (1981). In the past few decades, β̂c has been considered as the standard estimate

for β0 in statistical literature. Efficiency properties of β̂c were discussed by Efron (1977)

and Oakes (1977). In particular, Efron (1977) examined the complete likelihood function

that is parameterized through baseline hazard function λ0(t) in (1.1), and showed that

Cox’s partial likelihood function contains nearly all of the information about β0, and β̂c is

asymptotically efficient. Using the counting process approach, the books by Fleming and

Harrington (1991), and Andersen, Borgan, Gill and Keiding (1993) give a complete treatment

of asymptotic theory and include many relevant references. We also refer to Cox and Oakes

(1984), Therneau and Grambsch (2000), Kalbfleisch and Prentice (2002) for discussions and

references on developments of the Cox model.

However, as pointed out in Cox and Oakes (1984; page 123), the efficiency results on

β̂c are only asymptotic, and for finite samples the loss in precision from using the partial

likelihood can be rather substantial. It is well known and confirmed clearly by our simulation

results (some of which are presented in Section 3) that the loss of efficiency can occur when,

among other possible situations, the sample size is small or moderate, or β0 is far from 0.

For instance, the numerical results presented in Table 1 of Kay (1979) show up to 18% loss

of efficiency for β0 = 0.5 with rather large sample size n = 1000. It is also well known

that in medical clinical trials, the sample size of survival data is often small or moderate.
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In literature, there have been some estimators for β0 constructed based on various types of

approximated likelihood, viz., the likelihood by grouping continuous model (Kalbfleisch and

Prentice, 1973), the likelihood by discretizing the continuous Cox model (Bailey, 1984), etc.

But none of these estimators has demonstrated small-sample advantage over Cox’s partial

likelihood estimator β̂c. With these in mind, a natural question would be: Does the actual

maximum likelihood estimator (MLE) for β0 (i.e., the MLE based on the exact complete or

full likelihood) perform better for small or moderate samples? We do not know the answer

to this question because up to now the actual MLE has not been given in the literature.

Using Poisson process arguments and parameterization via baseline hazard λ0(t), Efron

(1977) showed that the complete or full likelihood function can be expressed as the product

of Cox’s partial likelihood function and a factor which involves both β and observed data;

see equation (3.10) of Efron (1977). This means that for finite samples, the inference based

on the partial likelihood is not based on all the observed data in the sense that the partial

likelihood is not the likelihood of observed sample (1.2); see discussions on page 559 of Efron

(1977). But, in Efron’s formula it is not obvious how to profile out nuisance parameter λ0(t)

in order to obtain the actual MLE for β0.

In this article, we derive the full likelihood function for (β0, F0) in Cox model (1.1) with

survival data (1.2), where F0 is the baseline distribution corresponding to baseline hazard

function λ0(t). Using the empirical likelihood parameterization (Owen, 1988), we explicitly

profile out nuisance parameter F0 to obtain the full-profile likelihood function for β0 as well

as the actual MLE for β0.

Note that the key to achieving our results here is the combination of utilizing the Lehmann

family properties and the empirical likelihood techniques. Although Cox’s partial likelihood

has been carefully studied in the past 35 years, the Lehmann family properties have not

been used to derived the exact full likelihood function for the continuous Cox model (1.1).

The empirical likelihoods have had a long history in survival analysis. Since Owen (1988),

empirical likelihood has been developed as a powerful nonparametric inference approach,

and many authors have applied it in survival analysis; see Owen (2001) and a review paper

by Li, Li and Zhou (2005) for detailed descriptions and many references on this topic.

As reviewed in Li, Li and Zhou (2005) for works on the Cox model with right censored

data, Pan (1997) obtained an approximated empirical likelihood function for (β0,Λ0) in the

Cox model (1.1), where Λ0 is the cumulative hazard function of λ0. By discretizing Λ0,

she showed that nuisance parameter Λ0 is profiled out via the Breslow estimator (Breslow,

1974), and the resulting profile likelihood function for β0 is the Cox’s partial likelihood.

This result was also obtained in Murphy and van der Vaart (2000), who referred their

approach as empirical likelihood due to the use of point masses on the hazard function.

However, one of the unsatisfactory features of the Breslow estimator is that the estimated
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hazard masses can exceed 1 (Kalbfleisch and Prentice, 2002; pages 116-117), in turn, the

corresponding estimator for F̄0 can have negative values; see formula (2.10) on page 15 of

Cox and Oakes (1984) for discrete distributions. Different from these existing works, our

approach is based on the full likelihood function for (β0, F0) in Cox model (1.1), which,

when profiling out the nuisance parameter F0 by discretizing, is different from the likelihood

function parameterized via (β0,Λ0). And our resulting MLE for F0 is always a proper

distribution function with values between 0 and 1, while our resulting MLE for β0 show

favorable simulation performances over Cox’s estimator β̂c.

The main materials in this article are organized as follows. Section 2 derives the full

likelihood function for (β0, F0) and the MLE (β̂n, F̂n) for (β0, F0), where the relation between

β̂n and β̂c is made clear by showing that Taylor’s expansion gives Cox’s partial likelihood

estimating function ϕn(β) as the leading term of the full-profile likelihood estimating function

ψn(β). Section 2 also shows that the log full-likelihood ratio has an asymptotic chi-squared

distribution. Section 3 discusses computational issues and treatment of ties, and presents

some simulation results which show that the MLE β̂n performs favorably over β̂c for small

or moderate sample sizes, especially when β0 is away from 0. In Section 4, we discuss

a real dataset example, which demonstrates that in practical situation our full likelihood

ratio test and Cox’s partial likelihood ratio test may sometimes lead to statistically different

conclusions. Some concluding remarks are included in Section 5.

The findings in this article suggest that the MLE is preferred over Cox’s partial likeli-

hood estimator when sample size n is small or moderate. This should not be a surprise since

the MLE is based on all the observed data in the sense that it is based on the exact full

likelihood of observed sample (1.2). In contrast, Bailey’s estimator (Bailey, 1984) is based on

an approximated likelihood function obtained by assuming a discrete baseline distribution

F0 (despite the fact that the Cox model assumes a continuous F0 for continuous lifetime

variables), thus his estimator is different from our actual MLE β̂n, and more importantly

‘numerical studies suggest no small-sample advantage’ (Bailey, 1984; page 734). Our other

appealing findings here include: (a) Wilk’s theorem holds for the log full-likelihood ratio of

β0; (b) the full likelihood function leads to the MLE jointly for (β0, F0); (c) the computation

for the MLE β̂n is only slightly more complicated than Cox’s partial likelihood estimator

β̂c; (d) our method can be extended to deal with other types of censored data. The result

of Wilk’s theorem is of interest here because it has been established generally for paramet-

ric full likelihoods, but not generally for nonparametric or semiparametric full likelihood

functions, while the Cox model (1.1) is a semiparametric model. The last point (d) is of

particular interest because it is well known that the counting process approach is applicable

to right censored data, but not complicated types of censored data, such as doubly censored

data (Chang and Yang, 1987; Gu and Zhang, 1993), interval censored data (Groeneboom
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and Wellner, 1992), etc. However, the extension to other types of censored data requires

additional and non-trivial work which will not be considered in this current paper.

While the main focus of this paper is the estimation of β0 with small or moderate sample

size n, it is worth noting that the MLE F̂n for baseline distribution F0 does not require any

extension or approximation of the continuous proportional hazard model to discrete data;

rather it is based on the full likelihood function with restriction of all possible candidates

for the MLE of F0 to those distribution functions that assign all their probability masses

to observations Vi’s and interval (V(n),∞). In contrast, there have been some competing

methods to estimate F0(t) or the cumulative baseline hazard function Λ0(t) that require the

use of discrete logistic model (Cox, 1972), or grouping continuous model (Kalbfleisch and

Prentice, 1973), or discretizing continuous proportional hazard model to have approximated

MLE (Breslow, 1974) in the context of counting process (Andersen and Gill, 1982), etc.. For

detailed discussions and more references, we refer to Andersen, Borgan, Gill and Keiding

(1993; Section IV.1.5) and Kalbfleisch and Prentice (2002; page 143).

2. Maximum Likelihood Estimators

For simplicity of presentation, this section considers the case that covariate Z is a scaler

rather than a vector, i.e., p = 1 in (1.1). The generalization of our results to multivariate

case with p > 1 is straightforward and is summarized at the end of this section.

To derive the full likelihood function for (β0, F0), we notice that under the assumption of

Cox model (1.1), each Xi has a d.f. that satisfies the following Lehmann family properties

(Kalbfleisch and Prentice, 2002; page 97):

(2.1) F̄ (t |Zi) = [F̄0(t)]
ci ⇔ f(t |Zi) = cif0

(t)[F̄0(t)]
ci−1,

where ci = exp(Ziβ) with β = β0, F̄0(t) = [1− F0(t)] and F (t |Zi) is the conditional d.f. of

Xi given Z = Zi, while f(t |Zi) and f
0
(t) are the density functions of F (t |Zi) and F0(t),

respectively. We also notice that if g(v, δ | z) represents the conditional p.d.f. of (Vi, δi) given

Zi = z for survival data (1.2), we have g(v, 1 | z) = f(v|z)F̄Y (v) and g(v, 0 | z) = f
Y
(v)F̄ (v|z).

Thus, under the Cox model (1.1) with right censored survival data (1.2), the likelihood

function of (Vi, δi) given Z = Zi, 1 ≤ i ≤ n, is given by

n∏
i=1

g(Vi, δi|Zi) =
n∏

i=1

(
f(Vi|Zi)F̄Y (Vi)

)δi
(
f

Y
(Vi)F̄ (Vi|Zi)

)1−δi

,

which under (2.1) is proportional to

n∏
i=1

(
f(Vi |Zi)

)δi
(
F̄ (Vi |Zi)

)1−δi

=
n∏

i=1

(
cif0

(Vi)
)δi

(
F̄0(Vi)

)ci−δi

.
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Hence, the full likelihood function for (β0, F0) in Cox model (1.1) with data (1.2) is given by

(2.2) L(β, F ) =
n∏

i=1

(
ci dF (Vi)

)δi
(
F̄ (Vi)

)ci−δi

,

where ci = exp(Ziβ). To profile out nuisance parameter F0, we, without loss of generality,

assume that there are no ties among Vi’s with V1 < · · · < Vn (see Section 3 for treatment

of ties), and we use the empirical likelihood parameterization (Owen, 1988; Shorack and

Wellner, 1986). That is, we restrict all possible candidates for the MLE of F0 to those d.f.’s

that assign all their probability masses to points Vi’s and interval (Vn,∞), which writes the

full likelihood function (2.2) as follows:

(2.3) L(β, F ) =
n∏

i=1

(
cipi

)δi

(∑n+1
j=i+1pj

)ci−δi

,

where p
i

= F (Vi) − F (Vi−) for 1 ≤ i ≤ n; 0 ≤ p
n + 1

≤ 1 is the probability mass of d.f. F

on interval (Vn,∞); and we have F (x) =
∑n

i=1 pi
I{Vi ≤ x} satisfying

∑n+1
i=1 pi

= 1.

Denoting di = ci + · · ·+ cn, we show in the Appendix that for any fixed value β satisfying

cn ≥ 1, likelihood function L(β, F ) in (2.3) is maximized by:

(2.4) 1− F̂n(t) =
∏
Vi≤t

di − δi
di

.

In (2.3), we replace F by F̂n, then from the proof of (2.4) given in the Appendix (see equation

(A.1)), we obtain the following full-profile likelihood function for β0:

(2.5) `(β) =
n∏

i=1

( ci
di

)δi
(di − δi

di

)di−δi

= `c(β)
n∏

i=1

(di − δi
di

)di−δi

,

where `c(β) =
∏n

i=1(ci/di)
δi is the Cox’s partial likelihood function. Thus, the MLE for β0

is given by the solution β̂n which maximizes the value of `(β), and consequently F̂n in (2.4)

with β replaced by β̂n is the MLE for F0.

Differentiating log `(β), algebra shows that β̂n should be a solution of equation:

(2.6) ψn(β) ≡ n−1 d

dβ

(
log `(β)

)
= n−1

n∑
i=1

δi

(
Zi + ei log

di − 1

di

)
= 0,

where ei =
∑n

j=i Zjcj, ψn(β) is the full-profile likelihood estimating function, and from (2.5),

log 0 is set to 0 whenever it occurs. To compute β̂n, the Newton-Raphson method may be

used with Cox’s partial likelihood estimator β̂c as the initial value.
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Remark 1. On Condition cn ≥ 1: Throughout this section so far, all arguments require

cn ≥ 1 for any fixed β, which ensures that for fixed β: (a) Full likelihood function L(β, F ) in

(2.3) has a finite maximum value; (b) F̂n given by (2.4) maximizes L(β, F ) and is a proper d.f.

with all terms on the right-hand side of equation between 0 and 1, because di > cn ≥ 1 for all

1 ≤ i < n. These clearly are crucial reasons for having a well-defined full-profile likelihood

function `(β) as well as a well-defined MLE for F0. Note that the requirement of cn ≥ 1 for

any positive or negative β is equivalent to requiring Zn = 0. Thus, in practice and for the

rest of this paper, the natural way to handle this is to adjust Zi to Z̃i = Zi − Zn, 1 ≤ i ≤ n,

which rewrites model (1.1) as λ(t; Zi) = λβ,n(t) exp(Z̃iβ) with λβ,n(t) = λ0(t) exp(Znβ). In

(2.3)-(2.6), we replace Zi and ci by Z̃i and c̃i = exp(Z̃iβ), respectively, then we have c̃n ≡ 1

for any β; the solution of (2.6) gives the MLE for β0, still denoted as β̂n; and the resulting

estimator in (2.4), still denoted by
¯̂
Fn, is the MLE for [F̄0(t)]

eZnβ
, thus the MLE for F̄0(t)

is given by [
¯̂
Fn(t)]e

−Znβ̂n
. Our extensive simulation studies show that such a treatment on

condition cn ≥ 1 gives excellent performance on the resulting MLE β̂n and the Newton-

Raphson algorithm. In particular, c̃n = 1 for any positive or negative β plays a crucial role

for stable performance of the Newton-Raphson algorithm, because Z̃i’s in equation (2.6)

ensure d̃i > 1 for all 1 ≤ i < n and for any positive or negative β. Finally, we note that

adjusting Zi to Z̃i = Zi−Zn, 1 ≤ i ≤ n, does not change the Cox’s partial likelihood function

`c(β) in (2.5), thus does not affect β̂c, because `c(β) =
∏n

i=1(ci/di)
δi =

∏n
i=1(c̃i/d̃i)

δi and the

partial likelihood estimating function in (1.3) satisfies

(2.7) ϕn(β) = n−1 d

dβ

(
log `c(β)

)
= n−1

n∑
i=1

δi

(
Zi −

ei

di

)
= n−1

n∑
i=1

δi

(
Z̃i −

ẽi

d̃i

)
,

where d̃i = c̃i + · · · + c̃n and ẽi = Z̃ic̃i + · · · + Z̃nc̃n. The uniqueness of the MLE β̂n and

further rationale for using the given Z̃i is discussed in Remark 2.

Interestingly, by Taylor’s expansion we show in the Appendix that the MLE β̂n is linked

with Cox’s partial likelihood estimator β̂c by the following:

(2.8) ψn(β) = ϕn(β) +Op

( log n

n

)
,

where ϕn(β) is the partial likelihood estimating function in (2.7). Further, Wilk’s theorem

on the log full-likelihood ratio is established below with proof given in the Appendix.

THEOREM 1. Assume (2.8) and assume the regularity conditions on Cox model (1.1)

(Andersen and Gill, 1982). Then, R0 = −2 log[`(β0)/`(β̂n)] converges in distribution to a

chi-squared distribution with 1 degree of freedom as n→∞.
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Remark 2. Uniqueness of the MLE β̂n: To further understand the rationale of using

Z̃i = Zi−Zn, 1 ≤ i ≤ n, as suggested in Remark 1, we assume that the parameter space for β

satisfies |β| ≤M1 <∞ for some constant M1, and that the covariate variable Z has a finite

support. Then, there exists a constant 0 < M <∞ such that we always have |Ziβ| ≤M for

1 ≤ i ≤ n and any |β| ≤ M1, and we can rewrite Cox model (1.1) as λ(t; z) = λM(t)ezβ+M

for λM(t) = e−Mλ0(t), which gives Ci = eMci = eZiβ+M ≥ 1 for all 1 ≤ i ≤ n and for any

|β| ≤ M1. With these Ci’s, the arguments in (2.3)-(2.5) show that equation (2.6) becomes

ψM,n(β) ≡ n−1
∑n

i=1 δi
(
Zi + Ei log Di−1

Di

)
= 0 with Di =

∑n
j=iCj and Ei =

∑n
j=i ZjCj, the

resulting estimator
¯̂
FM,n by equation (2.4) is the MLE for [F̄0(t)]

e−M
, and equation (2.8)

holds for ψM,n(β) for fixed M as follows:

(2.9) ψM,n(β) = ϕn(β) +Op

( log n

n

)
, as n→∞

where ϕn(β) is given by (2.7). The solution of equation ψM,n(β) = 0 gives an MLE β̂M,n

for β0. Thus, the MLE for β0 depends on the choice of M ; in turn, it is not unique due to

the Cox model assumption (1.1) itself, which allows the use of an arbitrarily large enough

constant M in the way described above. On the other hand, by Taylor’s expansion and a

proof similar to that for (2.8), we can show that for any given survival sample (1.2),

(2.10) ψM,n(β) = ϕn(β) + o(1), as M →∞

where o(1) is uniformly for β. Equations (2.9)-(2.10) together explain why the Cox’s partial

likelihood estimator β̂c has the well-known good asymptotic properties, despite it is not the

actual MLE. With (2.10) in mind, in practice we should choose M considering the following

two factors: (i) When Znβ ≥ 0, choose M = 0, i.e., if Znβ ≥ 0, we have cn ≥ 1, thus there

is no need to use M ; (ii) When Znβ < 0, choose a small M > 0 to have Cn ≥ 1, because a

large M > 0 implies
¯̂
FM,n(t) ≈ [F̄0(t)]

e−M ≈ 1 and ψM,n(β) ≈ ϕn(β). Hence, in practice we

use the smallest M ≥ 0 under condition Cn = eZnβ+M ≥ 1 for any |β| ≤ M1, and such an

M is given by Mn = min{M ≥ 0 |Znβ + M ≥ 0} = −ZnβI{Znβ < 0}. Thus, for positive

covariates Zi’s, we should use Mn = 0 if β0 > 0; Mn = −Znβ if β0 < 0. Since in practice

the true value of β0 is unknown, we always use Mn = −Znβ (unless there is evidence for

Znβ0 > 0), which gives Ziβ +Mn = Z̃iβ as suggested in Remark 1. In conclusion, the MLE

for β0 in the Cox model (1.1) is generally not uniquely defined; but it is uniquely defined

under assumptions: (a) we know nothing about the true value of β0; (b) cn = eZnβ ≥ 1

for any positive or negative β to ensure a well-defined full-profile likelihood function `(β) in

(2.5). And such unique MLE is given by the β̂n in Remark 1. Note that under Remark 1,

the MLE β̂n is uniquely well defined as a solution of equation (2.6) with Z̃i’s in the places
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of Zi’s, and equation (2.8) and Theorem 1 hold with Z̃i’s in the places of Zi’s.

Remark 3. p -Dimensional Zi: If Zi and β0 are p -dimensional vectors with p > 1 in

(1.1)-(1.2), with minor modifications in the derivations and proofs we have that (2.3)-(2.8)

and Remarks 1-2 hold, where with ci = exp(Z>
i β), ei and Z̃i = Zi − Zn are p -dimensional

vectors, and (2.6) has p equations. Moreover, a minor modified proof of Theorem 1 shows

that R0 converges in distribution to a chi-squared distribution with p degrees of freedom.

3. Simulations and Treatment of Ties

This section first presents some simulation results to compare the MLE β̂n with Cox’s

partial likelihood estimator β̂c for the case without ties among Vi’s in (1.2). Then, we

discuss how to handle ties among Vi’s, and present some simulation results to compare β̂n

with Efron’s estimator β̂E. In all our simulation studies, β̂n is calculated using the Newton-

Raphson method with β̂c or β̂E as the initial value. Routines in FORTRAN for computing

β̂n are available from the authors.

Without Ties Among Vi’s in (1.2):

Let Exp(µ) represent the exponential distribution with mean µ, and U(0, 1) the uniform

distribution on interval (0, 1). In our simulation studies, we consider FY = Exp(2) as the d.f.

of the right censoring variable Yi, FZ = U(0, 1) as the d.f. of Z, and FX|Z = Exp(e−Zβ0) as

the conditional d.f. of X given Z; thus (X,Z) satisfies the Cox model (1.1) with regression

parameter β0 and baseline d.f. F0 = Exp(1). For each case of β0 = 1, 0,−1, we generate 1000

samples with sample size n = 15, 20, 30, 50, respectively, and for each n Table 1 includes

the simulation average of β̂c and β̂n with the simulation standard deviation (s.d.) given in

the parenthesis next to them, respectively. The censoring percentage in each case is also

reported in Table 1.

Table 1. Comparison between β̂c and β̂n

Parameter β0 = 1 β0 = 0 β0 = −1

Sample Size Ave. β̂c Ave. β̂n Ave. β̂c Ave. β̂n Ave. β̂c Ave. β̂n

n = 15 1.145 (1.42) 1.042 (1.36) 0.020 (1.47) 0.016 (1.41) -1.120 (1.72) -1.062 (1.66)

n = 20 1.116 (1.13) 1.035 (1.09) 0.052 (1.23) 0.047 (1.16) -1.112 (1.44) -1.060 (1.39)

n = 30 1.081 (0.85) 1.018 (0.83) 0.013 (0.93) 0.009 (0.89) -1.066 (1.04) -1.018 (1.02)

n = 50 1.036 (0.64) 0.988 (0.63) 0.003 (0.68) -0.001 (0.66) -1.020 (0.74) -0.986 (0.74)

Censoring % 23.7% 33.4% 45.4%

Table 1 clearly shows that the MLE β̂n performs better than Cox’s partial likelihood

estimator β̂c for small or moderate sample sizes when β0 is away from 0. For instance,

the loss in precision for β0 = ±1 with, say, n = 15 is reflected by the simulation Mean

Square Error (MSE). Simple calculation gives that when β0 = 1, the simulation MSE is
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2.037 and 1.851 for β̂c and β̂n, respectively, yielding 1.851/2.037 = 90.9% (such ratio is

92.2% for n = 20), while when β0 = −1, the simulation MSE is 2.973 and 2.759 for β̂c and

β̂n, respectively, yielding 2.759/2.973 = 92.8% (such ratio is 92.7% for n = 20). The loss

in precision for β̂c shows even more obviously when we use β0 = ±2,±3, · · · in simulation

studies of Table 1. To illustrate, we include results for β0 = −2 with sample size n = 15

in Table 2, where Relative Bias is |(β̂ − β0)/β0|, Relative MSE is E[(β̂ − β0)/β0]
2 and the

censoring variable is still Exp(2). Note that in Table 2, the ratio of simulation relative MSE

for β̂n and β̂c is 8.969/33.658 = 26.6%. Also, note that with fixed censoring variable Exp(2),

the censoring percentage increases as we choose a smaller and smaller β0; thus our extensive

simulation studies include cases with much higher censoring percentages than that shown in

Table 2, and the results are similar to what’s presented here.

Table 2. Comparison between β̂c and β̂n

β0 = −2, n = 15, [Censoring Percentage] = 57.0%

Estimator Simulation Mean (s.d.) Simulation Relative Bias Simulation Relative MSE

β̂c -3.403 (11.518) 0.702 33.658

β̂n -2.828 ( 5.932) 0.414 8.969

Finally, although not presented here, our simulation studies also show that the MLE F̂n

given in (2.4) provides a very good estimate for 1− [F̄0(t)]
eZnβ

; see Remark 1.

With Ties Among Vi’s in (1.2):

Let W1 < · · · < Wm be all the distinct observations of V1 ≤ · · · ≤ Vn, where m < n, and

for those tied Vj’s, the uncensored Vj’s are ranked ahead of the censored Vj’s. If we have,

say, V1 = V2 = V3 = W1 with δ1 = δ2 = 1, δ3 = 0, then by Efron’s estimation (see pages

48-49; Therneau and Grambsch, 2000) di’s in Cox’s partial likelihood function `c(β) in (2.5)

are modified as d1 = c1 + c2 + · · ·+ cn, d2 = (c1 + c2)/2+ c3 + · · ·+ cn, d3 = c3 + · · ·+ cn, etc.,

which give Efron’s estimator β̂E. The idea of this Efron’s estimation is that since the ties

are caused by rounding errors in practice and we do not really know if it in fact is V1 < V2 or

V2 < V1 (which affects the values of d1 and d2), we take ‘average’ to modify di’s in `c(β); see

Therneau and Grambsch (2000). In our full-profile likelihood function `(β) given in (2.5),

we face the same problem with di’s when there are ties among Vi’s; thus Efron’s estimation

for di’s is applicable in `(β) for the same reason as for `c(β). Hence, applying these Efron’s

modified di’s in (2.5)-(2.6), the MLE for β0 when there are ties among Vi’s is given by the

solution of (2.6), still denoted by β̂n.

Some simulation results are presented in Tables 3-4 to compare the MLE β̂n with β̂E. In

these simulation studies, we consider n = 15, FY = Exp(2), and FX|Z = Exp(e−Zβ0), and

we create ties among Vi’s as follows: compute tk = V1 + k
n
(Vn − V1) for 0 ≤ k ≤ n + 1,
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and set Vi = tk+1 if Vi ∈ [tk, tk+1), which represents rounding errors in practice that cause

tied values among Vi’s. Table 3 includes the simulation results based on 1000 samples with

FZ = U(0, 1) for β0 = −2 and β0 = 2, respectively, and reports the average number m of

distinct Vi’s. Table 4 includes results of the same simulation studies with FZ = Exp(1) for

β0 = −0.75 and β0 = 0.75, respectively.

Table 3. Comparison between β̂E and β̂n

FZ = U(0, 1) Estimator Simul. Mean (s.d.) Rel. Bias Rel. MSE Ave. m

β0 = −2 β̂E -3.025 (9.044) 0.513 20.711 8.3

Censoring: 57.0% β̂n -2.662 (5.541) 0.331 7.785 8.3

β0 = 2 β̂E 2.167 (1.349) 0.084 0.462 7.8

Censoring: 16.8% β̂n 2.013 (1.329) 0.007 0.442 7.8

Table 4. Comparison between β̂E and β̂n

FZ =Exp(1) Estimator Simul. Mean (s.d.) Rel. Bias Rel. MSE Ave. m

β0 = −0.75 β̂E -1.115 (2.490) 0.487 11.259 8.2

Censoring: 50.4% β̂n -1.029 (1.602) 0.372 4.701 8.2

β0 = 0.75 β̂E 0.749 (0.435) 0.001 0.336 7.9

Censoring: 20.9% β̂n 0.713 (0.428) 0.049 0.328 7.9

Overall, Tables 3-4 show that the MLE β̂n performs favorably. In particular, note that

in Table 3, the ratio of simulation relative MSE for β̂n and β̂E is 7.785/20.711 = 37.59% for

β0 = −2, while in Table 4, such ratio is 4.701/11.259 = 41.8% for β0 = −0.75.

4. Data Example

We consider the Stanford Heart Transplant data set (Escobar and Meeker, 1992; it is

available in R library with file name ‘stanford2’), where Z is the age of a patient and X is

the survival time subject to right censoring. To see that different likelihood ratio tests can

lead to different conclusions in practice for smaller data sets, we use observations number

76− 100 and observations number 50− 100, respectively, to test H0 : β0 = 0 vs. H1 : β0 6= 0

using Wald test, the partial likelihood ratio (PLR) test and our full likelihood ratio (FLR)

test according to Theorem 1. The results are summarized in Table 5, which show that PLR

test and FLR test have statistically different conclusions for sample size n = 25 when 5% is

used as the test significance level.

Of course, the point of this example is not to say that the FLR test is always more

efficient than the PLR test; rather it demonstrates the fact that in practical situations FLR
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test and PLR test may sometimes lead to statistically different conclusions for small or

moderate samples. This, along with the simulation results in Tables 1-4, indicates that

the full-likelihood inferences for the Cox’s model developed in this article are worth further

examination and consideration.

Table 5. Stanford Heart Transplant Data

Data Information Estimator p -value

Observations Used n Censored Obs. β̂c β̂n Wald Test PLR Test FLR Test

No. 76− 100 25 8 0.367 0.397 0.063 0.056 0.038

No. 50− 100 51 23 0.153 0.149 0.050 0.045 0.049

5. Concluding Remarks

We have derived the full likelihood function for (β0, F0) in the Cox model (1.1) with

right censored survival data (1.2), and have derived joint MLE (β̂n, F̂n) for (β0, F0), where

F̂n is always a proper distribution function. While our simulation studies indicate that for

small or moderate sample sizes the MLE β̂n performs favorably over Cox’s partial likelihood

estimator β̂c, the theoretical estimation bias of our MLE β̂n in comparison with that of the

Cox’s estimator β̂c is to be investigated in a forthcoming paper.

A preliminary version of the R-code that computes the multivariate p -dimensional MLE

β̂n and related quantities has been developed, and is now available at the following link:

http://www.ms.uky.edu/∼mai/Rcode/PHreg.fit.R.txt. Although the code needs to be fur-

ther refined for publication quality, the computations we have conducted so far show that

the algorithm is stable for the multivariate setting.

Acknowledgment. The authors thank the Associate Editor and two referees for their

comments and suggestions on the earlier draft of this article.

APPENDIX

Proof of (2.4): Let ai = p
i
/bi and bi =

∑n+1
j=i pj

. Then, we have

b1 = 1, bn+1 = p
n + 1

, bi+1 = (bi − pi), (1− ai) = bi+1/bi.

From
∏n

i=1(1− ai) = bn+1 and from

n∏
i=1

(ai)
ci(1− ai)

n−hi =
( n∏

i=1

(ai)
ci

) n∏
i=1

(bi+1

bi

)n−hi

=
( n∏

i=1

(ai)
ci

)
(bn+1)

n(1−c̄)

n∏
i=1

(bi)
ci ,
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where hi = c1 + · · ·+ ci and c̄ = n−1
∑n

i=1 ci, we can rewrite (2.3) as

L(β, F ) =
n∏

i=1

(cipi
)δi(bi − p

i
)ci−δi =

( n∏
i=1

(ci)
δi(p

i
)ci

) n∏
i=1

(1− ai

ai

)ci−δi

=
( n∏

i=1

(ci)
δi(p

i
)ci

)∏n
i=1(ai)

δi(1− ai)
[n−δi−(c1+···+ci−1)]∏n

i=1(ai)ci(1− ai)[n−(c1+···+ci)]

=
( n∏

i=1

(ci)
δi(p

i
)ci

)∏n
i=1(ai)

δi(1− ai)
[n−δi−(c1+···+ci−1)]

(bn+1)n(1−c̄)
∏n

i=1(pi
)ci

=
n∏

i=1

(ciai)
δi(1− ai)

di−δi .(A.1)

From the 1st and 2nd partial derivatives of logL with respect to ai’s, we know that the

solution of equations ∂(logL)/∂ai = 0 is given by âi = δi/di, 1 ≤ i ≤ n, and it maximizes

L(β, F ) under condition cn ≥ 1. Hence, (2.4) follows from noting that the p̂
i
’s corresponding

to âi’s give
¯̂
F n(t) =

∏
Vi≤t(1− âi) and that condition cn ≥ 1 implies all 0 ≤ âi ≤ 1. �

Proof of (2.8): From Remark 1, we give the proof for ψn(β) in (2.6) with

Z̃i = Zi − Zn, 1 ≤ i ≤ n, assuming that |β| ≤ Mβ < ∞ and Z has a finite support.

From c̃n = 1, Z̃n = 0, equation (2.7) and Taylor’s expansion, we have in (2.6),

(A.2) ψn(β) = n−1

n∑
i=1

δiZ̃i − n−1

n−1∑
i=1

δiẽi

( 1

d̃i

+
1

2ξ2
i

)
= ϕn(β)− 1

2Rn,

where Rn = n−1
∑n−1

i=1 (δiẽi)/ξ
2
i with ξi between d̃i and (d̃i − 1). From (1 − 1/d̃n−1)

−1 =

(1 + 1/c̃n−1) and mi(β) = min{Z̃jβ | i ≤ j ≤ n}, the proof follows from

|Rn| ≤
1

n

n−1∑
i=1

|ẽi|
(d̃i − 1)2

=
1

n

n−1∑
i=1

|ẽi|
d̃2

i (1− 1/d̃i)2
≤ 1

n

n−1∑
i=1

|ẽi|
d̃2

i

1

(1− 1/d̃n−1)2

≤ Op(n
−1) max

1≤i≤n
|Z̃i|

n−1∑
i=1

exp(−mi(β))

exp(Z̃iβ −mi(β)) + · · ·+ exp(Z̃nβ −mi(β))

≤ Op(n
−1)

n−1∑
i=1

1

n− i+ 1
= Op

( log n

n

)
. �(A.3)

Proof of Theorem 1: From Remark 1, we give the proof for `(β) in (2.5) and ψn(β)

in (2.6) with Z̃i = Zi − Zn, 1 ≤ i ≤ n, which implies c̃n = 1 and Z̃n = 0. Applying Taylor’s

expansion on log `(β0) at point β̂n, we have that from (2.6) and ψn(β̂n) = 0,

(A.4) R0 = −nψ′
n(ξ)(β0 − β̂n)2 = −ψ′

n(ξ)[
√
n(β̂n − β0)]

2,

where ξ is between β̂n and β0. From (2.8), we know that
√
n(β̂n− β0) and

√
n(β̂c− β0) have
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the same limiting distribution N(0, σ2) for some constant 0 < σ2 < ∞. It suffices to show

that −ψ′
n(ξ) converges to 1/σ2 in probability as n→∞.

From Taylor’s expansion, c̃n = 1, Z̃n = 0 and (2.7), we have that in (2.6)

−ψ′
n(β) =− n−1

n−1∑
i=1

δi

(dẽi

dβ
log

d̃i − 1

d̃i

+
ẽ2i

d̃i(d̃i − 1)

)
=− n−1

n−1∑
i=1

δi

{dẽi

dβ

(
− 1

d̃i

− 1

2ξ2
i

)
+
ẽ2i
d̃i

( 1

d̃i

+
1

η2
i

)}
=− ϕ′

n(β) + 1
2R1,n −R2,n,(A.5)

where R1,n = n−1
∑n−1

i=1 δi(dẽi/dβ)/ξ2
i and R2,n = n−1

∑n−1
i=1 δiẽ

2
i /(d̃iη

2
i ) with ξi and ηi

between d̃i and (d̃i − 1). Applying the argument in (A.3) to R1,n and R2,n, respectively, we

obtain −ψ′
n(β) = −ϕ′

n(β) + Op((log n)/n). The proof follows from the fact that −ϕ′
n(β) is

the negative second derivative of the log of Cox’s partial likelihood, and −ϕ′
n(β0) converges

to 1/σ2 in probability as n→∞; see Andersen and Gill (1982). �
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