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ABSTRACT

SOME NONPARAMETRIC TWO SAMPLE TESTS

WITH RANDOMLY CENSORED DATA

MAI ZHOU

In this thesis, we propose and study a new generalization of the two sample
rank tests of Chernoff and Savage (1958) by replacing the usual empirical distri-
bution function by the Kaplan-Meier estimator. This new class of rank tests
which can accommodate randomly right censored data is not the same as Gill’s
K-class of tests. Its asymptotic distribution and efficacy are derived and studied.
We show how to choose the optimal test within the class and prove that it is the
most powerful if the censoring patterns are the same. A consistent null variance

estimator of the test statistic is given in Chapter 6.

We also study several versions of a difference of means test for censored
data. Recently developed censoring regression techniques are specialized to the
two sample case. Some interesting results are obtained when we compare their

asymptotic variances.

Some Monte Carlo simulation comparisons are carried out for a sample size
of 50 with the well known Mantel-Haenszel or log-rank test included as a stan-

dard one. The resulting tables are given in Chapter 8.

Some interesting new properties of the Kaplan-Meier estimator are also

derived. These results are summerized in Chapter 2.
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CHAPTER 1

INTRODUCTION

In many medically related statistical problems in which a lifetime or time to
occurrence of some event is observed, the data are typically nonnegative and
often incomplete due to a variety of reasons. For instance, during the observation
period a patient may not want to continue to use the drug or may die due to
competing causes not under study. Hence, we sometimes only observe a portion
of the lifetime, and such data are said to be censored. The analysis of such cen-
sored survival data has been given much attention in the recent literature. As

some examples consider the following statistical problems:
Example 1  ( Kaplan-Meier estimator )

Suppose the actual lifetimes of the patients are X(,X,, -~ ,X, which are
iid. with PX; <1 =F(). Unfortunately, we can only observe the pair (Z,9;),

where

Zi=min(X;,C;);  §=lxxc,
Here ¢,,C,, --- ,C, are called censoring or follow-up times. We make
the added assumption that the C,’s are i.id. with P(C;<t)=G(t) and that they
are inc_lependent of the X;’s. This is the so called random censorship model ( see,

e.g., Breslow and Crowley (1972) ).

From the observations (Zz,8;) we wish to estimate the distribution F(s)

without assuming any parametric structure on F ; that is, we want a non-

parametric estimator of F.




Kaplan and Meier (1958) suggest the so-called product limit estimator
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defined as follows,

A AN(s)
F o 1 —_ l — ———— 11
® :l'ls r( T ) (1.1)

to estimate F(1), where

NO=#i:Z;<t;8=1} and YW =#{i:Z=>t} ,
i.e., N(t) is the number of persons who died up to time t, Y(z) is the number of
people at risk at time t, and AN(s) represents the jump size of N() at s ( i.e., the

number of subjects dying at s ). The set { i: Z >} is called the risk set at time t.

Since being introduced, various good properties of the Kaplan-Meier esti-
mator have been studied. These include strong, uniform convergence with and
without rate; and asymptotic normality at a fixed point and as a process. (See
Breslow and Crowley (1972); Peterson (1977); Phadia and Van Ryzin (1978);
Foldes and Rejto (1981) and Gill (1983) ).

Example 2 ( Two sample rank tests )

In medical studies, industrial life-testing, and in many other situations, we
often want to compare the survival distributions of two populations. For exam-
ple, there is a new drug which we want to compare with the ‘standard’ one, or
we might want to see whether there is any difference between the two treatments

(or two products) in terms of lifetime.

Naturally the data coming from the two experiments fall into two groups
which are subject to possibly different censorings. The aim is to make statistical
inference on the lifetime distributions regardless of the censoring and if possible

to use a nonparametric procedure which is robust.

Specifically, we have two sets of data, », of one kind, n, of the other and

each group is subject to censoring. Let X;;, X5, - - , Xin, be ii.d. lifetimes for




i=1,2, CiusCoy  , C be iid. censoring times, and
PX;<t)=F(0; P(Cy<t=G(). However, we only observe (Zz;, 8;), where
Z; = min (X, ,~,~),8,~,~=1[xﬁscij]. The task is to test if there is any difference

between F; and F,.

The Mantel-Haenszel test, perhaps the most widely used test today, was
proposed by Mantel and Haenszel (1959), Mantel (1966), Peto and Peto (1972)
and by Cox (1972) among others. Thus it sometimes is called the log-rank test

or the Cox test.

The Mantel-Haenszel test uses the test statistic

R (1.2)
where Y;; N; bear the same meaning as in the Example 1 except that the sub-

script which indicates the process is associated with the sample i .

Other two sample tests can be written in the similar way. For example,
Gehan’s test (Gehan (1965)) which is a censored two sample generalization of
the Mann-Whitney-Wilcoxon test; the Tarone-Ware class of statistics (Tarone
and Ware (1977)) and the Harrington-Fleming G, statistics (Harrington and Flem-

ing (1982)) can all be written similar to (1.2) with weight functions differing

from

Y Y therein. In particular, all of these classes of statistics are special
2

subclasses of the tests given by Gill (1980) referred to as his K-class for which
he proved many optimal properties.
In this thesis, we will introduce and study (1) a new class of rank tests and

(2) a difference of means tests which are seen to be alternatives for the two sam-

ple censored data problem. We now close this chapter with a thesis outline.

In Chapter two we present some new properties of the Kaplan-Meier esti-




mator which will be used in later chapters. The extensions given therein shed

new light on the Kaplan-Meier estimator.

Starting from Chapter three, we confine ourselves to the two sample prob-
lem. We propose a whole new class of rank statistics of censored data for detect-
ing any difference in the F; and prove its asymptotic normality in Chapter three.
The proof of the negligibility of some of the higher order terms is postponed to
Chapter five which is a long and technical one. This class is a generalization to
censored data of the famous Chemoff-Savage (1958) tests for the uncensored

data case.

Chapter four deals with the problem of choosing the best test (in the sense
of maximizing Pitman efficacy) out of the new class for a specified setting. We
give the defining equation which determines the best choice of the test in terms
of the underlying null distribution, the censoring distributions, and the nature of

the alternative hypotheses.

In Chapter six we propose a null variance estimator for the statistics pro-
posed in Chapter three. We prove its consistency as an estimator. This enables

us to perform the test by using the asymptotic theory based only on the observed

data.

Chapter seven introduces and studies a mean test which is an analog of the
t-test in the censorship case. We also obtain some interesting results when we

apply several regression techniques to the two sample situation.

Some simulation comparison is done on a Masscomp MC500DP computer.

The resulting tables as well as some theoretical comparisons will be presented in

Chapter eight. Chapter nine is a summary chapter.




CHAPTER 2

SOME ONE SAMPLE RESULTS

In this chapter, we establish some one sample properties of the Kaplan-
Meier estimator that will be needed later. Although we sometimes will only use
the results in a special case, we think it is worthwhile to present them in a more
general setting because they are of interest in their own right.

Suppose, throughout this chapter, that the nonnegative r.v.’s
X ,Xs, - ,X, are iid. lifetimes with PX;<)=F@t)y; C,,Cy -+ ,C, are
ii.d. censoring times with P(C; <1 = G(#), both F(t) and G(z) are not necessarily
continuous, and X;’s are independent of C;’s.

Suppose we cannot observe all the X;’s but only Z; =X;AC; and §;= I, <cy -

A classical nonparametric estimator of F(z) based on (Z, §)’s is the Kaplan-Meier
or product limit estimator (see (1.1)). We will denote it by F,() or sometimes

simply F.
Theorem 2.1 If 6 is a nonnegative function with E6(X) <~ and

| o160 s a discontimaiy poina 14F (1) = 0 , then

o<| BOdF(t) — Ejoe(z)dp‘,(:) < [P < 01" 6dF(r) . 2.1

Remark 2.1: Mauro (1985) derived the left half of the above inequality by
assuming F and G are continuous and by using a combinatoric argument, while
we allow both F and G to be discontinuous. Furthermore, we get the much

harder right hand inequality. For instance, if we take 6(s) = I;, <5, We get a bound



on the bias of the Kaplan-Meier estimator, which improves upon Gill’s

(1980)[3.2.17] bound.

Let us first consider an application of the Theorem 2.1 before giving the

proof of Theorem 2.1. Define, for any distribution function F(z)

’

Tr=sup {t:F(t)y<1}.

Theorem 2.2  If 6() is a real continuous function such that E0(X,) exists,

and 15 > 17, then we have

oo . P 00
[,00dF0 — | 8wdr

Furthermore, if E6(X,) is finite, then

- L .
joe(z)dﬁ,,(:) N joe(r)dp(t) asn — .

P L
Here — and — denote convergence in probability and in L;-norm,

respectively.
Proof of Theorem 2.2: 1If EOX)) is finite, then the same argument as in

P
Mauro (1985) [Theorem 4.1] shows [oaF — JodF = Eocx,). 1If, however, EB(X,) is

infinite, say EB(X;) =+ , we define, for K > 0 , 05 = min(6(s), K ), then EOX(X)) < oo

and

3 n o0 " P
joe(r)dF,,(z) > joe’f(z)dp,,(z) — E0X(X)) asnooo .
On the other hand, since E6X(X;) — EO(X;) =+ o a8 K — + oo , we must have

oo R P
joe(z)dﬁ(z) — +o=EB(X;) . The case of E8(X;) = -  is similar.

For the L; convergence, notice that Theorem 2.1 implies, for nonnegative o,

Efedﬁ — E8(X,). This fact together with the already shown weak convergence pro-

L
perty implies (see Chow and Teicher, 1978, p. 100), f6aF 5 8(Xy).



By writing 6(¢) = 6*(:) - 67(r), where 6* and ¢~ are the positive and negative

part of @ respectively, the L, convergence for a general 6 follows easily. n
We now present a series of lemmas followed by the proof of Theorem 2.1.

We first introduce some notation. Let

= [9FG) .
A(t) - @ l—F(S—) ’

No=#{i:Z;<t,8=1};

YO)=#{i:Z>t} and T=T,=max{Z,2, - ,Z}.

It is well known that

M) =1Ig.<,, 5,=1)~ f Iiz,> wdA(u)
© 1
are martingales (in fact square integrable martingales) for an appropriate choice
of F,; in fact, the F, can be chosen to be
Fg = o{ all events that might be observed on [0, s] }
(a so called self-exciting filtration). Similarly

M) = IM{1) = N(@t) — | Y()dA@)
1 [0,
is also a martingale with respect to F, (see, e.g., Aalen (1978)).

Lemma 2.1

E |:1[T">11(M.'(S+h) - My(s) )IF,] <0 as.
fors<t,h>0 and s+h<t .
Proof: Consider, first, the set {Z;<s}. On this set we can easily check

My(s + hy = M(s) =0 . So by writing

Ellir > ((Mi(s + b) = M(S)IFs} = E{Uiz,< o1+ Iz, 2 s DT, > 0 (M5 + B) = Mds))IF,}



= E{liz, <« s fiir, >  \(Mi(s + h) — M{(s))IF,} + E{lg, > s\ir > o \(M{s + h) = Mi(s))IF,}

=l <\ EQO IFs} + Iz 2 6 \E{iz,2 o fim, > ¢ ((Mils + h) — Ms))IF} (2.2)

we see immediately that
Elig, > (Mds + h) - M())IF]=0  on{Z <s}.

What remains to be proved is that the second term of (2.2) above <0

almost surely.

Recall that

M{s) = ][8i= 1,Z,<s]1~ Jul[ziz ,‘]dA(u)

Note, we have that

Ellir ) Mis+h) - M(s)) | F} = (2.3)

S+h
= Ellg,> 1 Iiy= 1,0 <z zon) |l = Ell,s of T2 u1dA@) IF]

= f P;=1,T,>t Z edl |F,)- Ellg, > ) (MZiA s+h) ~ MZ; A 5)) | Fy)

(s, s+h)
Without loss of generality, let us compute the conditional expectation on the

set where

{ZiZS,ZiIZS,ZiZZS, ,Z‘ZS,ZI“‘<s, ,Zi“*"<s} R
where k=0,1, -+ ,n-1).

On this set, for s <1 <t

P@i=1,2€d,T,>4F)=P(3;=1,Z edl |F) - P(5,= 1, Z edl, T, < ¢ |F,)

_P@i=1,Zed) PG =1,Zed)Pz els, 1)
T PEZi2y) P*Y(Z, > 5)

_ﬂ@zn—ﬂmemm
- Pk+1(Z,' > S)

PG, =1,Z ed) . (2.4)

On the other hand, we have

Ellir,> fAZins+B) = MZirs)F] = [ [AUAs+h) - AIP(Z edl, T, > t | F,)
(s,]

>



and

P(Z; edl)
P(Z; 2 5) i ’
P(Z;ed, T,>t|F,)= PXZ, 2 5) - PNZ; €[5, 1)
P(Z; edl) if s<i<:t
Pk+l(z‘ > S)

in a manner similar to the way (2.4) was derived.

PXZ; 2 5) - PXZ; e[s, 1))

If, however, we use
PH(Z; 2 5)

P(Z; edl) throughout the above

expression (i.e., for both s</<t and I>¢ ), we get a lower bound of the condi-

tional expectation, namely

E[Ig, > i [AZ; asth) — A(Z; A ))IF,]

: _ pky
2 J (A A s+h) - A(s)] PYZ; 2 5) - PXZ, es, 1))

P(Z; edl
(O PHYZ > 5) & ed)

PXZ, 2 5) - PYZ e[s, 1])
= I (:L][A(I A s+h) = A(s))P(Z; e dl).

Now substituting this lower bound and (2.4) into (2.3), we have
Ellir > g Mfs + h) = Ms) | F,] =

= | PG=1T,>1Zed|F,)- | IAUAsthy - AP@Z cdl, T, > ¢ F)
(s, s + A) (s, o]

PYZ; 2 5) - PXZ, e[s,1)
(5, 5+ h] PHY(Z > )

P(8,= 1, Z;Gdl)—-

_PMZ25- Pz els, )

j (AU A s+ k) - A(s)IP(Z; edl)

Pkﬂ(z,‘ 2 S) (s, =]
_ PNZ;25) - PXZ; es, 1)) P@; =1, Z, edi) [AU A s+h) — A(s)IP(Z; € dl)
- PZ, > 5) wisn PZ2s9) o] P(Z; > 5)
=0 as. ,

where the last equality follows by the fact that the term in brackets is the condi-
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tional expectation of the martingale difference E[M{s + h) — M{s) |F,] . [
Lemma 2.2 Assume X(z) is nonnegative and predictable with respect to
F, , and suppose j;X(s)dM(s) is well defined (i.e., Ej;X2d<M> <o),

Then

Elg 5. I;X(s)dM(s) <0.

Proof: Since M = ZA:M‘ , it follows that
1

t n t
Elg,>q [ X()dM(s) = 3, E[ Iir, > ( X()AM(s) .
1
Thus we need only show that for any i
E j; Ip > X(s)dM{s) < 0.

t
To this end, let us write j01[7_>,]X(s)dM,~(s) as an L,-limit of the summation

> X(t4-1) Iz, > ¢ {Mi(t) = Mt;_ 1)} , and notice that by taking double expectation
E [}: X(j- ) Iig, » 1 {MA5) — MGt - 1)}]

= E[Z X(t - DEUr, > o{M(1) - Mi(;_ )} lij_ ‘]] <0,
where the last inequality follows by Lemma 2.1 and the assumption X >0 .

t
Thus the L,-limit of the summation, fo I 5 11 X(s)dM(s) , also has nonpositive
mean. M
Lemma 2.3

EQ = F(0)g, >0 2 [1- FOEIg 5,

or equivalently,



1-F0)
1-Fe) Iir, >0 2 Elfr 5 4

or equivalently,
EF0) - F] Iz, 51 S0 .

Proof: By the representation (3.2.15) of Gill (1980), we have

R 11— Fs-) (1 - FTUF() - F(T,)]
Fu) - F(y=[1-F@®] fo Tﬁ%;—%dmﬂ = Iir, <y 1”1 F(T,) (

Multiplying I .., on both sides, we get

. 11— F(s-
[Fa() = F(OMir, > 1= [1 ~ F(1)] Iir, > 13 jo_l-——l:“((i_))%dM(s)

Now taking expectation on both sides and applying Lemma 2.2, we get that

R t1—F(s—
ElF () - FOl Iir,> =11 - FWIE Ig, > () JO_QMdM(S) <0. =

1-F(s) Y(s)
Lemma 24
1- FTy)
E _1_—1:(7-71[35:] SElg <q=PT,<1) .
Proof: It is well known that 20"

————— is a martingale in t (see, e.g.,
- F(T,p) ° g (see, e.g

Gill p.40 (1980)), thus we have

L-F(Taay) _ 1-F0)
1-FT,At) ~ " 1-F0O)

Consequently,

1= F (T, A 8)
I‘F(Tn/\t) (I[Tn>r]+1[1-"s,])= 1=E(I[Tu>’]+l[T,Sf])

1-F T, At) ; El—ﬁ,,(r,.u)l . .
T o + E———r——- = +
L-FT, A0 [T,>1] 1- F(T, A1) [T,s1t] (T,>1] (T,<t]

1-F 1-FT,)
ml[r,,m] + E_I_—F(Tn)'l[T.sﬂ =Elir, > 1+ Elfr <1y

By Lemma 2.3,

11
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1-F )
_I'Tn(t)l['l‘u>t] 2 EI[T,I> t] .
Thus it follows that

1- FyT,)

'I—-TT,I)I[T"SHSEI[T"S’]:P(T"S . |

Now we are ready to prove Theorem 2.1.
PROOF OF THEOREM 2.1 ;

We start with an expression of Gill (1980) [p. 38, (3.2.16)]

[1 - F Tl [F(t) - F(T,)]

E[F() - F0) = Ell < 1 - F(T,)

for t such that F(5) <1 .

From this, it is easy to calculate

E{[F(t + dt) — F\(t + d)] - [F(t) - F )]} . (2.5)

To do the calculation, we note that

E{[F(¢ + dt) = F(t + di)] - [F(t) - F ()]} = E{F(t+ diy — F(t) - [F(t + dt) — E,(D]}

[1 - FTIIF(¢ + di) — F(T,)] [1 - FTIIF() — F(T,)]
=E IIT,. <t+di 1

1 - F(T,) T Ty 1 - F(T,)

and by writing the indicator Iy crvany @8 Iip <o + Iist, <rva) , WE get

I l—ﬁ"(T")F dty — F(6)] + 1 l—ﬁ"(T")F dt) - F(T,
[Tn<t]T_—F'(T_n')'[ (t+dy-F@l + [rsTl<t+dt]'1—_'m[ (z + dt) — F(T,)]

It is easy to see that the above two terms are both >0 , hence the expecta-

tion is also = 0.

On the other hand, if we change [F(: + dr) - F(T))] to [F(t + dt) — F(1)] in the
second term above, we enlarge it (¢<T, <+ dr therein), and thus get an upper

bound given by

1- ﬁn(T,,) 1- ﬁn(Tn)

Iy, <']_IT(T§[FU +dt) - F(] + Ins:rn«uql—_—pm (F(t + dr) — F(1)]




1-F T,
=E I[T_ <t+ d,]-l—_m [F(¢+dy-F@)) < P(T, < t+ dO[F(t + df) - F@®) ,

where the last inequality follows from Lemma 24,

So we have

Os(2.5)SP(T,St+dt)[F(t+dt)—F(t)].
Now because the middle term of (2.1) (without taking expectation) is

bounded above by

Z0{IF(y + dt) = Fot; + di] - [F(s) - Foe]} + 2I0°() ~ 8.(6)) [F (4 + di) - F(r]
5 D

7

where 8"(z) and 0.()) are the maximum and minimum of 6 over the small interval
4 4; + dr) respectively, it is easy to see that the expectation of this summation is

bounded above by
;9.(1,-)P(T,, St+dh) [F(y+ di) - F)] + Y00°() - 8.(5)] [F(; + dt) — F(1))]
i 5
Upon taking limits, we see that the second summation above tends to zero
in view of our assumption Jti {dF =0 The first summation above is easily seen
to be bounded by j:e(z)P"(Zl St+e)dF() for any e>0. Letting € » 0, we get the

upper bound of (2.1). The lower bound O can be proved in a similar way and is

easier. n

Remark 2.2: From the above proof, we see that if we do not assume
o 4erm
j 01[6(,) is a discontimaity poins J4F(f) = 0 , then the bounds in (2.1) are off at most by a factor-

[6* — 6_dF. Where 6*() = limsup 6(s), and ©_(t) = liminf 6(s) .
sS—1t S—=1

T
The consistency of the statistic j'o[l - F 0)dr is known (Susarla and Van

Ryzin, 1979), (Gil, 1980). The consistency of the statistic of the form

JT w(t)
0

.y )dr is the content of the next theorem. First we need the following
p— 2 t

13



lemma as conjectured by Gill (1980, p.40).

Lemma 2.6 For any B (0, 1)

L
P{(1 - F, (&) 2 BX(1 - F(t)); t€[0, T)}21-P - %e B
Proof: = Notice the fact that if we denote the Kaplan-Meier estimator of

the censoring distribution G(f) by G,1), then [1 — F,][1 — G, is just the usual

empirical survival function corresponding to [1 — F()][1 — G(9] .

Now since

P{(l—é,.)s—é—(l—G); tel0,T) }21-B

and

-1
P{(1 - F)(1 - G,) 2 B(1 - F)(1 - G); [0, T) }21--%e P

for B €(0, 1) (see Gill (1980), Wellner (1978), Gill (1983)), and
{1-Gn s %(1—6» €0, T)} N {1-FY1-GH2B(L-F(1-G); €0, T)}
implies
{U-F)2p(1-F); €0, T)}
the conclusion follows from Bonferroni’s inequality. m

Theorem 2.3  Suppose w(y) is a real function and o >0 , then

14

T w() P Whatt abnt
I—-—-—-,—-—dt——)f—-—adt as n — oo,
0[1 - F (1))° o[l -F® CLT

provided the right hand side is well defined. Jin 1: (’:;/fl% ) f—!:% e

Proof: By considering separately w*(t) and w(t), we can and will assume,
without loss of generality, that w()>0. Let us first consider the case

J“—w(t)___dt
0 [1-F(n)*



MAT

P
In this case, the convergence of J ﬁt)(t?dt - J‘:—[-l_w%()t)?dt , where

1-F(M) >0, is obvious. And by Lemma 2.6 we have, with probability no less

1
than1—ﬁ-%e B that

- T
# J —YO0 4> J’ 0 4 (2.6)

M-FOI* yarll - £01°

Now, for any given n>0,

T

w(t) = W)
——t = | ——— > .
P e o e 12} @7

TAM
<P{| [ —X0 4 [—¥O 450
<P TR ar® Jl:u-F(r)]" 231+

T
PO | —20 >Ny p) —20 g0y
RS B b Al Wl EE 3

-1
Choose B small enough, such that 1-p- %e Fyp-1

> and choose

1~ t
M=My>0, such that 1 - F(M) > 0, and EZ-J.M[T-—wﬁ’z_t)T;dt < —731- Then the last term

of (2.7) vanishes, the middle term is less than % in view of (2.6) and the way
we choose B and Mp. The last term of (2.7) approaches zero when n — o, so0

b

we can choose N> 0 such that whenever n >N, this term is less then —g— Thus

the sum of the three probability terms in (2.7) is less than n. This completes the

proof because 7 is arbitrary.

f J'w w(?) dt =

0Tl = FOI° =+ , the same truncation technique as in the proof of

Theorem 2.2 applies, except here the truncation should be

wK = min[ w(e), K11 < if Tp=oo

15



wx=min[w(t),K]I[‘<tF_%] ftr<e. L

For the remainder of the thesis, we assume that our lifetime distribution F(y)
is continuous.

The next theorem is essentially the Theorem 2.1 of Gill (1983), with a

slight generalization.

Theorem 2.4  Let (1) be a continuous function which admits a represen-
tation h(z) = hy(1) — hy(t), where both hi(6) and hy(s) satisfy
(l) hi 2 O

(i5) h; nonincreasing on [M,tr) for some M < 1 2.8)

F dF
B ———5
@) !o 70 (1-FY1-0) <
Then the processes (h2)7 , (Jndz)" and (JzdnY" converge jointly in D0, 75 in

distribution to processes hZ®™), [haz= and |Zan respectively, and

hZ™) = jhdz<°°> + jz(")dh N 1742 0)) 2o ast— 1

where

Z=Zn=dﬁi:£ ; and  (*(0) ) means (*(tA T))

t
and Z® = Brownian motion with clock C(f) = -[o(l_F)d%_G) i

Proof:  First, we show that the three limiting processes are well defined

on [0, Tr].
Notice that A=k, - h, , so the limiting processes
hZE) = B Z) — pyz)

[haz = [z — [rdz

16
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[2an = |Z2=dn, - [Z=an, .
The right hand side is well defined by our assumption (2.8) and Gill (1983,

Remark 2.2), hence our limiting processes are well defined.

The only thing remaining to be proved is the ‘tightness at 1.’ , since the
convergence on [0, - —-¢] is apparent, and the limiting processes do exist on

[0, 77 ] as we have just shown. (see Billingsley, 1968 )

The following facts are useful :

B = (hy — ) < (hy + ) <21 + 2B
If 1" = hi+h, , then h* satisfies (2.8) also, i.e.

@ K20
(i) h* nonincreasing on [M, 1)
F 2
(éii) j JEYC() < o0
We first show tightness of [hiz :

By Lenglart’s inequality (see, e.g., Gill 1980, p-18 Th.2.4.2)

2 A 2
, N, e POU - EsP p
P{sup [ fvh(s)dZ(s)| >e} < =+ P{ jv————[l FoF 1% dA(s) >}

0-FOF Yo Ae>1

where the last inequality follows from the fact [A* ()] > [h(s)]>

< _112_ op I' A @P(L - Fis9PF
€

Now, the exact same argument as in Gill (1983, p.55, last eight lines), gives

us the desired tightness.

Finally, to show the tightness of hZ, note that
sup IR(OZ(t) — h(t)Z(7)| (2.9)
TSt

< sup |K(O[Z(©O) - Z(o)l + sup |[h(t) = h(D)]Z(v)]
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For the second term, we observe that since k() 1is nonincreasing, we have
hyt) — hft) < 0. Thus
sup |th(t) ~ h(D)Z(v)| =
= sup [[(A1(®) = hi(T)) — (hao(®) = hy(TN)Z(7)|
s:lg; I(Ai(®) = (D)) + (hy(8) — hy(DDIZ(3)|
= sup |K*(1) — K (T)I|Z(v)|
< (%) - K ()|Z(v)|

where the last inequality follows by #* being nonincreasing.

For the first term,

sup [WOIZ(t) - Z)| < sup [K©)[Z() - Z(n)|

since |h(t)| < |hH().

Therefore equation (2.9) above is bounded by

sup| 120 - 2| + (B @) - K apze)
Now follow exactly the same argument ( with réplace by #* ) as in Gill
(1983, p.55, line 14 ) to give us the tightness. m

Theorem 2.5

T, T, D
Vn [f , 80 x) - [ 8(x)dF ()] > N, 0%

as n — o , provided /" ~ Sx 9eyd (1- R

o0 &
oo — (o2 dF ) sefi-re] - [i-Fordow

2 _ _ _ N . {
o = ] ewi-Fe] - [ saroy g e <

7]

N

o
B 9("[!— Feol - ,/:( 1-Fead 66)

@y 6l - F@®] - f:e(s)dF (5) is well defined and regular at 15

(i.e., it admits a decomposition hy — h, where both hy and h, satisfy (2.8). )

SO (L) Can A,ch be waten as

z
©o

st = g ism[:-v:&)]dew}l dF

A [1- £a] [1~ Gl
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R 2t dF
(i) UtedF] jom = 0 as t>

iv) J:Q(t)dF(t) < o
Proof: Observe that

B F@ | po 1 paa @ F® B - F

1-Fx) 1-F() 1—Fe 4~ F®

So we have

Tn a Tl Tn ~
[ 80dF(x) - [ 8@dF@) = [ 80)d(E (x)-F(x))
0 0 0

T Fx)-F
= Oe(x>d{—ff—)p'(x§i)<1—nx»}
& FF@)  E-Fe)
= [ o0N1-F(x)1d—"= o I, Fda-F) (2.10)

Define

h) = [ 8@d(1 - Fx) )
(which is well defined by the assumption (i) ). Integration by parts in the second

term in (2.10) allows us to rewrite (2.10) as

Fo(x) - F(x)

F)-F@) P -F@) 7, [T
x h(x)lo" - | ,Hed—— )

+
1-F(x) 1-F(x)

Tl
= [ 0L - Feld

F. ) -F@x) F T, - F(T,

Tl
= [, 10@I1 - FOx)) - hx}d—— o T T Ray M

Now Theorem 2.4 and assumption (i) implies

F(T,) - F(T,) P
'—T_—m—-h(Tn) - 0 . and ]
|

I Fuo)~F(x) P , :
vn JO{O(x)[l—F(x)]—h(x) }d_l-_pW - N@O,c% . :

Therefore the conclusion of this theorem is true. ]



CHAPTER 7

DIFFERENCE OF MEANS TEST

Despite the development of many types of nonparametric rank tests for the
two sample problem in the no censoring case, the t-test still retains its primer

position as the standard two sample test.

We will formulate here an analog of the t-test in the censoring case and
state a few results about its asymptotic properties. Let us agree to call it the

‘difference of means test’.

The test statistic is obviously to be given by ( in the notation defined in
Chapter three ),

MN=*/1V[j:l a —ﬁl)dt—fT:(l - Fydf . (7.1)
Because of the work of Susarla and Van Ryzin (1980) and Gill (1983) on
the mean survival time estimator, the asymptotic théory for the test statistic My is
readily formulated.
In another formulation of the problem, we can use the results on regression
analysis ( with censored data ) to yield different kinds of two sample difference
of means tests. We will compare these methods and study their relationships.

Theorem 7.1  Using all the notation of Chapter three for two samples, we

have

Ty R T ) R L) D
N J‘O(I—Fl)dt— J‘O(l—p,)d:— f0(1~F2)dt+ jo(l-pz)dz - NO,c%) , (7.2)

whenever its asymptotic variance o3 is finite, where
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dF(s) dFy(t)

217 R \ VA U et A 2 4ml)
"A‘xljo[frl Fuds] (1 -F)X1 - Gy) +MJ0[J,1 Fads] (1 - F)*(1 - Gy)

.. n; . .
Here as before A; denotes the limit of e We sometimes use the equivalent

R n1 ny
n = lim ~— _ = lim ~— .
notation A = lim I and 1 -A=1lim 5

Proof :  Because the two samples are independent, we can apply Gill
(1983)[Theorem 2.1] to each sample and make use of the independence to finish
the proof. [

Koul, Susarla and Van Ryzin (1981) suggest in the context of linear regres-

sion that one treat

7.
Y:j= SLJAII i=1,2;j=1, e (73)
1-GAZy
as the observation and apply the usual least square regression procedure to these
data. They proved the consistency and asymptotic normality of this method.

Applying this method to our case yields the two sample test statistic
1 1
T Xhi-— X . (7.4)
15 ny

Leurgans (1984) and Zheng (1984) suggest that instead of (7.3), we use

z; w I
. dt 2;>1 0
Y= — = ——dt t —=0) , 75
! J.01—(;,(:) -[01—G,~(z) (st 5= 75
i=12; j=1, -~ n

as the observations, called ‘synthetic data’ by Leurgans (1984). Both suggest that
(7.5) is better then (7.3).

However, in the two sample situation, we find that these two methods are

exactly the same as shown below.

49 [ &
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Theorem 7.2 Both (7.3) and (7.5) are exactly the same test statistics as !
My in Theorem 7.1. ( see equation (7.1) ) provided we always treat the last
observation as uncensored in the Koul, Susarla and Van Ryzin (1981) procedure.

Proof: If we write out the resulting statistic by applying Leurgans’ syn-

thetic data, we see it is given by

‘?‘J’O l—G(t) Zjo l—Gz(t)]
‘W—ZJ v 1 j I[Z&:>‘]
- ,01—G(t) 01—(;2(:)
=~/1V-J 21 _J —ZI ._d‘_.
Jony BTG G(t) om <7V Gy
=Wj:<1—ﬁ 2())1_02()] (7.6)

Now apply the fact that (1- F)1 - G) =(1- H), ie., that the Kaplan-Meier
estimator of the lifetime distribution multiplied by the Kaplan-Meier estimator of
the censoring distribution is the usual empirical survival function estimator of

(1-H)y=(1-F)X1-G); and remember for +>T either 1-F=0 or 1-G=0 and

% =0, we see that (7.6) becomes

W [J (1= Fi)(1 - Gy~ - j (- F)(1 - Gy~

G 1D Gz(‘)

Ty . T R
=N J’O(l —Fl)dz—jo(l — Fyde|

which is exactly the same as My,

For the Koul, Susarla and Van Ryzin transformation Y*, the test statistic i

becomes




Wity SZi 1o 8%
MT1-GiZ) mT1-G64Z,)

T;
We first take a look at J 1= F)dt. Observe that

T‘.
| L - Fdt = 3 X, AF(X,)
i
provided we always treat the last observation as an uncensored one ( death ).

Now note that the jump size of the Kaplan-Meier estimator at X; is

= 1_01(7) = AF(X;) (see Susarla, Tsai and Van Ryzin (1984)), so that the
i 1= Gl

above summation can be rewritten as

1 3 1 _1 S, Z;
20, G(X.,) Rk "nl—G( FROR - G4z
The remainder of the proof is now clear. ]

If we believe, in some cases, that the censoring mechanisms are the same

for the two samples, i.e., the censoring distributions are the same for both the
drug and the placebo, we can pool the two samples to get a better estimator of
the censoring distribution. One would naturally think that this will therefore give

rise to a better test. We find, however, this is not the case.

Let us denote the pooled Kaplan-Meier estimator of the censoring distribu-
tion by Gy to distinguishing it from Gy, the Kaplan-Meier estimator based
only on sample i . Then the pooled version of the test statistic is ( just replace G

by G)

Iz, 54

Lyl Ly fen g (1.7)
i 01— GN(z) nz i 01— GN(t)

The next theorem assures us that My is asymptotically normally distributed.

51
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We will pay special attention to its variance. ;

Theorem 7.3  The statistic My as defined in (7.7) is asymptotically nor-

mally distributed ( if properly normalized ) with variance

0'2=0'5+0%1+°')232 ,

provided the following conditions are satisfied:

@) <o,

where of is defined as in Theorem 7.1, and (i=#,i,i=1,2.)

A 1-Fay - 1-Fasy .

2 - F,
YT r v R

Opi =

1 1929 1 = H)dAC
T %) M- H)AC

oo P
@) ‘WJT(I—F,-)ds > 0; asNoow ,i=12;

00 e 2
.. P daG(1 -
(iid) jo[j'u F))ds] T ors < oo

where F* = M \F; + M,F; .
In order to prove the theorem, we need the following results.

Theorem 7.4 The compensated counting processes ( martingales )

M =NP - [YdAP and L= NC - [YdA€ are uncorrelated, ie., <M, L> = 0; or, M L is also

a martingale.
Where
Din — wr i . Dy = [ dF(s)
N =#{i:Z;<t, =1}, AP o a1 - F(o)
i _ cn= [ 966
N@W=#{i:Z<t, §=0} , A(t)_[o’,]l—G(s—)

Proof: Notice that M + L is also a compensated counting process, with

intensity |




53

J' YdAP + ijAC = j Yd(AP + AC)

Thus, the following, denoted M4, is also a martingale,

MA=WM+Ly - ij(AD + A%
With a little bit of algebra, we see

M?*+ L* + 2ML - [YdAP - J¥dA€ = MaA

[MZ—ijAD] + [LZ—ijAC] + 2ML = MA

Hence,

2ML = MA — [M2 -] YdAD] - {Lz - _[YdAC]

is also a martingale. ]

Corollary The processes J;QdM and [RdL are martingales with a zero corre-
0

. . Fi-F;
lation process, where we assume Q and R are predictable. Also,

and .

i

G- G

i

-G e thus martingales with a zero correlation process. m
-

Proof of Theorem 7.3:
We will use the notation MP? , MC , M} , Mt defined as follows:

Y+=Y1+Y2

MP =N~ [YdAP ; M =N - [YdAS ;

M= (N?+ N1 - [YidAD + A€ 5 Mg = INT + N§) - [rtaaC

dG(s)

where A€ = T-Goo After a bit of algebra, one can easily prove that
0%~ VT

Mi=M{+M? and Mt=M{+M5 .

Let us first look at




w I T,
1 Zy;>1
_— —_—dt - 1-F)dt . 7.
o zi IOI—GN(I) t Io( 1dt (7.8)

By a bit of algebra, we see that,

T

(7.8) = f El[z,, ) T——=—"" sz(t) - fo(l - Fy)adt
h1-A,
'Iol_c dx—j (1 - Fyydt
Tll_ﬁl 1-G T,
ol v — (-Fdi ~ [ 0~ Fod
1—H1 1-G
J' oA 1o |- o
By writing
1-H H -H _ Go_G
S (i Bulic R Tl €A D +g'
1-H, 1-H, 1-Gy 1-G
we can write the equality as
T H H1 G—N—G Tl‘
(78)-j -1, + -G a Fl)df+fos(1—F1)dt+

hHi-H G-¢
4 —=222 _I—Fd
Iol_HI - )t

Upon integration by parts, we get

Tﬁﬂ _..
+ I;qxﬂn-Fﬂdﬂ PR

18 = [ 1"t - Foag ot
7.8 =] I (- Fids] d—— —

H1 Gy -
1-G,

+jea—mw+j a—,m

= HI —Hl G— G—N
* (-[Tl(l - Fpas) ( - 1= G )cvaluatedatTl . (7.9

Now, the first two terms on the right hand side of the above can be written

as
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1-G.
e ;;UdM*(z) . (7.10)

J, (r-redly

Recall that

—dM*(z) +j (Il—Fl )5

Mf=M{+MP and ME=ME+MS
and notice that by Theorem 7.4, {MP, M{, M2, M5} are mutually uncorrelated mul-

’

tivariate counting processes. Hence, we finally have

T o
(7.10)=J;(L1—F1ds)1_1H1 - am? + j (j 1-F, s) dM§  +

G Y"()

S 1-G.
1 1 - 1
+ Io(jxl—Flds) ThE s T o T am§

Applying the same decomposition to the second sample term of the statis-

3 I[sz>,] Tz
tics, — =] 1-F,dt, we will get the same thing except the sub-
ics, ZJ'O - GN(t) J'o 2dt, we will get the same thing excep u

script 1 is now 2.

And so we get

[21,

wliz,. >
ZJ.“_ Zf [Zz,]

= W[ (4~ 4+ B ~By + D ] ,

where

(o 11,
Ai—jo(jtl = Fs) T —dM;

i B

1-G. 1 -
— + (ftl—F‘ds)l

T; - o
=jo[{ (J 1= Fids) = Iaryf 1~ Feds } ek

1 1
— | aMf
—H ni ¢

i

for i,i’!=1,2 iz

-H, G-G
D=3 1)‘*‘j €1 - Fd + Z e 0 (1—F)dz]( g Vi
=12
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H Gy-G
+ ~1)it! Ll 1-Fp)de .
Zen jo YA 5, (- F)

By the multivariate version of Rebolledo’s theorem, ( Anderson and Borgon
(1985) or Gill (1980, Th.2.4.1) Wl - Ay + 3, - By)] converges in distribution
to a normal random variable with variance

°'2=°%+°'1291+°%2

4
Finally we have to show vND —s 0.

The second sum of D is easy, since both

H; - H, d G-G
-, ™ 1%

o0 P
are bounded in probability ( see Lemma 5.2 ) and we assumed W_[Tl — Fds — 0.

Thus, we see that

T o (] l—ml( +8-C :

1-G )evaluaudatTi - 0 .

As for the first summation of D, the ¢* is nothing but

g =

« G-G G- _G-6? 1-G
1- 1-

G
G G T a-6% 1-¢

By Lemma 2.6 in Chapter two, we know : -

g. is bounded in probability,

therefore,

T

P{W] €1 - Fpds >ny = P I(G )10 - Fods sy

1 T, ~
1 f G-Gy
SB+%3 Py P{IOFW(I—_G—)(l—F,«)ds>n}

<p+Le B+P{J

G-Gy?
: wE=g)

- F n
o Bz (1-Fp)ds> 2}+

Y G-
+ P{jt_Elz-«/ﬁ(f—_—g-)z(l - F)ds > 121}




Again by Lemma 5.2, this is bounded by
1 - —
£, F " L WME=C Y _ryges
s[3+Be +P{j0$2~lﬁ(1_6)(1 Fyds> -1} +

"11..6-G 1
+B+P{j€§3«lﬁ(l—_?)(1 - Fds> 2} . (7.11)
The last probability term in (7.11) can be made arbitrary small by choosing
" large and when N is large because of assumption (iii). The other probability
~ P
term of (7.11) apparently goes to zero because W(%g)z — 0 there. Finally,
as the B’s are arbitrary numbers in (0, 1) we can make the B terms arbitrary small.
Therefore, the first summation of D is negligible.

For the last summation of D, we can use the fact that 1_3_ is also

bounded in probability ( see Lemma 2.6 of Chapter two ), and then almost the
same argument as in the proof for the first summation also works for this last

summation. ]

Remark 7.1:  Pooled or not pooled? The theorems above say that in the
two sample situation we should not pool to estimate the censoring distribution

when using the ‘synthetic data’ method. If we do, the variance will be larger.

Remark 7.2: If we know the actual censoring distribution G (or
G, and G, if they are not equal), and use it in the synthetic data expression, it is
straightforward to find its limiting distribution by employing the similar represen-
tations as in the proof of Theorem 7.3. Surprisingly, this new statistic has a
variance o = o} + 03 which is bigger then o} as in (7.2), which means ‘we are
better off not knowing G’ or ‘although we know G , we'd rather use an estimator

of it instead of the true G’. See Koul, Susarla and Van Ryzin (1980 Remark 4.5)

for a similar remark.
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Remark 7.3:  The method used here to prove Theorem 7.3 can also be

used to investigate the ‘synthetic data’ method applied to the censoring regres-

sion problem.
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CHAPTER 8

COMPARISON OF TESTS

In order to get some feeling about the small and moderate sample behavior

of the tests proposed, we did some Monte Carlo simulations of the following

situation:

sample size : ny=ny =50
null distribution : Fo=1-¢*
e - P
censoring distribution :  G;=1-¢ ?
- (_‘.)7-
alternatives : Fa=1l-e *

We also include the Mantel-Haenszel or log-rank test in our simulation
comparison as a standard one. The ‘mean’ entry is the difference of means test
as proposed in Chapter seven, the ‘RANK’ entry is the rank test defined by (3.3)

as in Chapter three with the choice of the optimal J function given by Theorem

4.2. It is (4.7) with a = -i- in this particular setting. See table 1.

Except the first row, each value in table 1 is the average of 90,000 runs.
The approximate five percent level for the first row there is set by adjusting the
1.96 significance level a little bit and running the simulation 160,000 times for
each test. The random numbers are generated by calling the IMSL library

subrouting GGWIB and using the same seed 123457.0 .

We sometimes have two values in one entry of the table. This is because

we have different versions of the test. (see, e.g., Gill (1980, pp. 47-48) for two
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ways of estimating the variance). In the log-rank column, the unbracketed value ‘
is derived from the test using the first variance estimator of Gill (1980), while

the bracket value is derived from the test using the second variance estimator

there, which is the same one as suggested by Mantel (1966).

POWER SIMULATIONS FOR
PROPORTIONAL HAZARD ALTERNATIVES
logrank RANK mean censoring%
Hg: A=1.0 5.043% 5.041% 5.039% 20.0%
(5.058%) (5.041%)
Hyg: A=1.1 13.03% 13.39% 12.98% 23.2%
(13.05%) (13.65%)
Hyed=12 | 34.28% 34.78% 34.42% 26.4%
(34.31%) (35.02%)
Hyua=13 | 59.88% 60.04% 60.28% 29.7%
(59.98%) (60.21%)
Hyh=14 | 80.27% 79.88% 80.74% 32.9%
(80.31%) (80.01%)
HygA=15 | 91.68% 91.20% 92.10% 36.0%
(91.76%) (91.39%)
table 1

The RANK column also has double entries. The unbracketed value is the
test defined in (3.3) and using the variance estimator of Chapter six. The brack-

eted value is the test statistic defined in Chapter three with the Hy now taken to

be the pooled Kaplan-Meier estimator of the lifetime distribution.




The mean column is the difference of means test introduced in Chapter
seven, with the variance estimator
w T
JJ, 1 - s ]zYx(z)‘[ﬂYtl((r;) “l, [f 2@% ' 61
The last column reports the percentage of censoring under the null and
alternative hypotheses. We see from the table 1 that the three tests have almost
identical power in this situation. Recall that in this situation the Mantel-Haenszel

test is asymptotically most powerful.

POWER SIMULATIONS FOR
NON-PROPORTIONAL HAZARD ALTERNATIVES
logrank RANK mean censoring%

Hy:B=20 [ 5.043% 5.041% 5.039% 20.0%
(5.058%) | (5.041%)

Hy:B=60 | 5.00% 4.82% 11.08% 19.7%
(6.60%) (5.29%)

Hy:B=40 | 5.09% 4.80% 6.89% 19.3%
(6.00%) (5.12%)

Hi:B=10 | 459% 4.87% 6.83% 24.2%
(5.08%) (4.80%)

Hy:B=08 | 4.36% 4.88% 8.96% 26.0%
(5.02%) (4.76%)

Hy:B=06 | 4.25% 4.82% 13.22% 28.3%
(5.09%) (4.79%)

H:B=04 | 443% 5.10% 19.94% 30.9%
(5.51%) (5.27%)

table 2
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Table 2 reports simulation results for non-proportional hazard alternatives;
namely, we take the situation where every setting is the same as before except

here we take
alternatives : Fa=l-e® . Bz2,

that is, the Weibull distribution with different shape parameters.

This table shows that the difference of means test is better than either the
Mantel-Haenszel or our rank test while the latter two are roughly the same. Both
rank tests behave badly in this case because both of them took the wrong weight

function.

The actual critical values used in the above two tables are not 1.96, and is
reported in the following table. The actual level for using the 1.96 as a critical

value is also reported there, where each entry is based on 160,000 runs.

significance level

logrank | RANK mean

actual 1.928 1.860 2.037
(1.974) | (1.870)
level of | 4.67% 3.87% 5.96%
1.96 (5.21%) | (3.92%)

table 3

Now, we present some theoretical comparison results.

The K-class of tests as defined in Gill (1980) can be made most powerful in

the equal censoring situation by chosing the optimal weight ( see Gill, 1980, p.

118 ). In the unequal censoring case we have the following lemma.
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Lemma 8.1 For any test whose efficacy depends on the censoring distri-

butions G; and G, only through the combination

(1-Gi())(1-Gy))
A-MA-G)+A(1-Gyr))

= 1-G'(0 (say), (8.2)
then its efficacy can not be better than the best one in the K-class.

Proof:  Suppose, on the contrary, that for some F,, F, ; G;, G, the efficacy
of a test is better then that of the best test in the K-class. Then for the case of
Fy,F,;G",G"; (where G" is easily seen to be a bona fide distribution function ),
their efficacies remain unchanged, i.e., the K-class is still inferior, because now
the combination

(1-GH1-G6Y _
1-M1-GH+r1 -G

1-G6"
is the same as before.

But in this case, we have equal censoring in the two samples and it is well
known (Gill, 1980, Section 5.3) that the best test in the X-class is most powerful.

The contradiction proves our lemma. m
Using this lemma we have the following

Theorem 8.1  The mean test as proposed in Chapter seven always has

Pitman efficacy less than or equal to the optimal test chosen from the K-class.

Proof: ~ Observe that the variance of the difference of the means test 7.1
is of as defined in Theorem 7.1. We easily recognize that its null variance
depends on censoring only through the same combination as (8.2). So the
efficacy of the difference of means test only depends on G,, G, through G* .

Applying Lemma 1, we see that the theorem is true. [

The difference of means test, although less powerful then the optimal one in

the K-class, has the feature of ‘‘not needing to choose a weight function’’. How-
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ever, using the K-class of tests, we always face the problem of chbosing the
weight function. For example, the Mantel-Haenszel test, which is the optimal
test in the K—élass assuming constant hazard ratio alternative, behaves very badly
in some cross hazard alternative situations as we see in Table 2. |

Theorem 8.2 If the weight function J of the rank statistics (3.3) is

strictly monotone, then the test is consistent for stochastically ordered alterna-

tives, provided j: J(H)YdF, = OP(%N) .
12

Proof: Notice that

j: JOF; + (1 = MF, )dF, — j:)J(s)ds £0 ,
because J is strictly monotone and because of the stochastic order of F; and
F,.
Therefore, we have
«lﬁ(jT:J(xF‘, + (1= MF, )dF, - J':)J(s)ds)

T R o
= W[ JOF + (1= DFy )dfy ~ [ JOF,+ (1 - OFydF, )

o 1
+ VN( joJ(url + (1 = MFp)dF; — jOJ(s)ds)
The first term is asymptotically normally distributed according to Theorem

3.1 of Chapter three, and the second term clearly goes to + «. This means that

the test is consistent. ]

Theorem 8.3  The rank statistic as introduced in Chapter three is asymp-
totically most powerful in the equal censoring situations if we chose the right

weight function J. In the case of unequal censoring, this rank statistic (with the

right choice of J ) has the same efficacy as the best test in the K-class under the
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same situation, provided lim 21 -®+D@w Dw) _,
u—1 g(u) 1-u

Proof:  We first establish some relationships between

A,
Ll OY , Wy
T wew = D) and  limN( A~ 1) =10

Without loss of generality, we can assume p,=0, so that F°=F, . Notice

that F=1-¢2 , we have

FRO - F) = 1-¢ % 1= MY

= e M0 _ MO Z MO () - A

dAy(s)
dAy(s)

where Ay is between A, and A, . By taking the limits we see that

= e 0] day(s) ~ diole) = & O (T - DangGs)

T2 - Do) = 11 - Flfly anets)
dm =YdAy and (8.3)
1-F,

Y0 = 11 - Fol (2,

1
Under the sequence of alternatives Fy,= FW , we have that the k-class of

tests W as defined by Gill (1980 p. 46)

D - - MH; + MH.
_ 2 1 111 2
WW — N(- [ Kydh,, [ ¥ T 0

where H;=(1-G)1-Fp).

So the efficacy is

- 2
UOKY dA,]
= 2 MH + MH,

JO MAHH, Ao
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Gill (1980) has shown that in this case the best choice of the weight func-
tion K is
X H\H,
o» = MH; + 7vsz ’
and so the best efficacy in this case is

Aidy f ‘fmdAo(t)

Gy - Gz)
M P st ey

"_LO_ e

= o 3oy &

where the equality follows by the fact that in our setting of the random censor-

ship model H; = (1 - G)(1 - F,) and from the definition of 8(Fo).

Now, by the relation (8.3) we see the above efficacy can be written as

2
du
g(u)

D'(u)(1 — u) + D(u)
1-u

j

8.4

On the other hand, the best rank statistic of Chapter three has efficacy (sub-

stitute the optimal J* (4.4) and (4.5) in its efficacy expression (4.3) )

J- D(u) [D’(u)(l - u) + D(u)] 2
0l -u g(u)

(8.5)

D’(u)(1 = u) + D(u) \2
f( = ) st )
Now integration by parts in the numerator of (8.5) and noting that D(0) = 0

and the assumption we have made, we have

D'(w)(1 — w) + D(w) D(u) I‘ =0
g(u) 1-u' )

We see that (8.5) becomes

2
du
8w

D'(w)(1 - u) + D(u)
1-u

I

) (8.6)
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which is the same as (8.4).

e ———

Because we already know the optimal K-class test is most powerful in the

equal censoring case, we see that the theorem has been proved. n




CHAPTER 9

A SUMMARY

In the two sample testing problem with censored data, there are not many
test procedures available other then the K-class of tests. Although the Mantel-
Haenszel test ( a commonly used K-class test ) behaves well in many situations,
there is sometimes a need for new test procedures. The median test as studied by
Brookmeyer and Crowley (1982) is certainly a possible choice. We hope that the
rank test and difference of means test proposed in this thesis will serve as possi-
ble candidates outside the k-class of tests. In fact, the simulation results as
shown in Chapter 8 favor the difference of means test. Of course, further simu-
lation and perhaps theoretical work is needed before we know when these tests

are better than the K-class of tests.

Both the rank test and the difference of means test as proposed in the previ-
ous chapters could be generalized in a number of ways. The difference of means
test can be generalized to the multi-sample case and, more important, to the
linear regression case. In fact, the two and multi-sample problems are special
cases of linear regression. Thus techniques similar to those used in this thesis can
yield some results for the ‘synthetic’ data regression problem for censored data.
(see e.g., Leurgans 1984)., We plan to investigate this problem in future work.
On the other hand, it is interesting to generalize the difference of means test to

sequential analysis and compare it with the Mantel-Haenszel test in both propor-

tional and nonproportional alternatives.
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For the rank test, the proof of Theorem 3.1 with a Little extra care could
allow the statistics to ‘stop’ at some early point (so called administrative censor-
ing) as mcntibned in the Remark 3.1. Hence, one can investigate this rank test if
multiple looks at the data are planned, i.e., one could study the performance of
the test statistics for sequential or group sequential analysis of the data. The
weight function J in the (3.3) could be taken as Jy instead of a single one, i.e.,

choose the weight function adaptively. Generalizations of the rank test to the

multi-sample case are also possible.

More simulation study is needed in a variety of possible settings, but that
was not the main focus of this thesis due to the limit of time. For instance, it
would be interesting to see how the difference of means test would compare to
the Mantel-Haenszel test in other situations ( heavy and medium tail cases ), and

the early stopping of the rank test in the nonproportional hazards settings.
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