
Confidence Intervals for AUC and pAUC by Empirical
Likelihood

Yumin Zhao∗, Xue Ding†, Mai Zhou‡

Abstract

The Receiver Operating Characteristic (ROC) Curve is often used to evaluate the
performance of medical diagnostic tests. The Area Under the ROC Curve (AUC) is a
one-number summary of the diagnostic performance. Sometimes the clinical interest is
focused primarily on part of the ROC Curve, and in this case the partial AUC (pAUC)
has been proposed by many authors to measure the performance of the diagnostic test.
Nonparametric estimators of AUC and pAUC are available when samples of test results
from diseased and healthy subjects are collected. We propose and illustrate in this paper
a novel empirical likelihood approach to test hypothesis and construct confidence intervals
for AUC and pAUC. The empirical likelihood ratio test in our setup yields an asymptotic
chi square distribution under null hypothesis. Thus, there is no need to estimate the
complicated scale factor or the variance of the nonparametric AUC/pAUC estimators like
most other competing methods do. Computation of the proposed empirical likelihood
is also studied. Simulations show our method is very competitive. In fact our method
tops competitors in every situations we simulated. Real data example (with R code) is
presented illustrating the confidence intervals for AUC and pAUC.

Keywords and Phrases: Chi square distribution; Two sample empirical likelihood
ratio; Partial AUC; ROC curve; Wilks confidence intervals, Nuisance parameter.

1 Introduction

The purpose of diagnostic tests is to confirm the presence of disease in subjects with disease
and to deny the possibility of the disease in healthy subjects. Ideally such tests should correctly
identify all patients with the disease (True Positive), and similarly correctly identify all patients
who are disease free (True Negative). However, a perfect test is hardly found in reality.
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For diagnostic tests which report numeric values on a continuous scale, one may chose a
threshold value c such that the values above c will be classified as positive, otherwise negative.
The sensitivity and specificity, which are defined as the probabilities of the test correctly
identifying the diseased and non-diseased subjects, respectively, can be computed across all
possible threshold values c for a test.

The plot of the sensitivity or the true positive rate (TPR) versus 1−specificity or the false
positive rate (FPR) as the threshold value for the test vary (from −∞ to ∞) is the receiver
operating characteristic (ROC) curve. The sample version of the ROC curve plot would replace
those positive rates by their corresponding sample fractions.

The ROC curve was first developed during World War II for detecting enemy objects
and soon found other uses in psychology, medicine, radiology, biometrics, and is increasingly
applied in machine learning, data mining and artificial intelligence researches. Numerous
papers are written on various aspects of this methodology. Several recent books are published
with extensive discussions on topics related to the ROC/AUC analysis and more: see [17],
[30], [32], [12]. Computation and plots related to ROC analysis are available in the R packages
ROCR and pROC.

1.1 Notation, Definition and Estimations

Let X and Y , with respective distribution functions F and G, be the results of a continuous-
scale test for a non-diseased and a diseased subject, respectively.

For a given value c, without loss of generality, we assume that a test value greater than
c is indicative of a positive test result. Sensitivity or true positive rate (TPR) is defined as
TPR = Pr(Y > c) = 1 − G(c). One minus Specificity or false positive rate (FPR) is defined
as FPR = Pr(X > c) = 1− F (c). The ROC curve is an x y plot of {1− F (c), 1− G(c)} for
all possible c.

The area under an ROC curve (AUC) represents the overall accuracy of a diagnostic test,
which can be interpreted as the probability in a randomly selected pair of diseased and non-
diseased subjects, the test value of the diseased subject is higher than that of the non-diseased
subject (Hanley and McNeil 1982) [7]. A perfect test has an AUC equal to 1.0. A test that
is just a random guess has an AUC value of 0.5. A test with an AUC value approaching 1.0
indicates a high sensitivity and specificity.

The AUC of the test results X and Y of the above non-diseased and diseased subjects can
be represented by (Hanley and McNeil 1982) [7]:

AUC =

∫ ∞
−∞

(1−G(s))dF (s) = Pr(Y > X) . (1)

Given a random sample X1, · · · , Xm of test results from non-disease population and in-
dependently another random sample Y1, · · · , Yn of test results from the disease population, a
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non-parametric estimate of AUC is

ÂUC =
1

nm

m∑
i=1

n∑
j=1

I[Yj > Xi] + 0.5I[Yj = Xi] . (2)

See for example: [6] or any of the above mentioned books.

However, the AUC of an ROC is a measure of the overall performance of a diagnostic test.
It may not be informative, or even misleading in some cases. For example, two diagnostic
tests may have the same AUC but not identical ROCs when the two ROC curves cross each
other. One test may be better than the other in the high FPR range; while the other test may
be better in the low FPR range. Thus to evaluate two diagnostic tests on a portion of ROC
curves, the partial AUC (which is defined as the area under a ROC curve between two FPRs
(McClish 1989) [13]), is desirable.

The true value of a partial AUC when FPR ∈ (p1, p2), with 0 < p1 < p2 < 1, can be
written as

pAUC(p1, p2) =

∫ t2

t1

(1−G(s))dF (s) (3)

where t2 = F−1(1− p1) and t1 = F−1(1− p2). For the special case of pAUC(0, p) this is

pAUC(0, p) =

∫ ∞
τ

(1−G(s))dF (s) (4)

where τ = F−1(1 − p). While our proposed empirical likelihood approach will work for both
cases specified above, for the ease of presentation we shall focus on the analysis for pAUC of
the type pAUC(0, p) in the rest of this paper, except in the Example 1 below where we gave
an empirical likelihood confidence interval for pAUC(0.2, 0.7).

The partial AUC of ROC curves has also been studied by many researchers. McClish (1989)
[13] first proposed the pAUC assuming binormal data. We shall focus on the non-parametric
method in this paper. Dodd and Pepe (2003) [6] proposed the non-parametric estimator for
the pAUC(0, p):

p̂AUC(0, p) =
1

mn

m∑
i=1

n∑
j=1

(I[Yj > Xi] + 0.5I[Yj = Xi]) I[Xi > τ ] (5)

where τ is the (1− p)th quantile of X, or equivalently, τ = F−1(1− p).
If the quantile τ in (5) is not known, as is usually the case, Dodd and Pepe (2003) [6]

suggested that an empirical quantile estimate be substituted: τ̂ = F̂−1(1−p) = inf{s : F̂ (s) ≥
1− p}; where F̂ is an empirical distribution based on X1, · · · , Xm. Dodd and Pepe (2003) [6]
also used some linear interpolation technique to improve the empirical quantile estimate. This
is equivalent to smoothing, which we shall also discuss in section 2.

Due to the vast amount of research literature on the topic, a complete review of existing
statistical inference methods for AUC/pAUC is unpractical here. But they roughly falls into
3 categories.
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• 1. Procedures based on the asymptotic normality of the AUC/pAUC estimators like (2)
and (5). We shall refer to them as the Wald method. A typical procedure will first obtain

an estimate, say σ̂2, of the variance of ÂUC, then the p-value of the test H0 : AUC =

θ vs. HA : AUC 6= θ, for example, can be computed as 2Pr(Z > |ÂUC − θ|/σ̂) where
Z denotes a N(0, 1) random variable. A Wald type confidence interval for AUC can be

computed by ÂUC±1.96σ̂. Wald type statistical analysis for the pAUC can be similarly

obtained, except the variance estimator of p̂AUC is more complicated. Example in this
category include Wieand et. al (1989) [24], DeLong [5], Bandos et. al [2], He and Escobar
[9], Yang (2017) [26] and those in the R package pROC. In this approach, the variance
estimator is the main difficult. Conventional plug-in method as well as Jackknife method
of estimating the variance were proposed and investigated.

• 2. Procedures based on re-sampling techniques. We shall refer to them as Bootstrap
method. Some of those are available in the package pROC. The jackknife method of
estimating variance mentioned above, however are classified here as Wald.

• 3. Adhoc pseudo empirical likelihood method or hybrid method, since they often need to
combine with some re-sampling methods to help estimate scale/variance/pseudo values.
We shall do a slightly more detailed review since this is closer to our proposed method.

Qin, Jin, and Zhou (2011) [18] and Qin and Zhou (2006) [19] applied a pseudo empirical
likelihood ratio method to the above AUC and pAUC estimator. Instead of using the
two samples of observations to construct an empirical likelihood (both diseased and non-
diseased samples), they constructed the empirical likelihood for AUC/pAUC using only
the non-diseased sample. The diseased sample only enters the calculation as a plug-in
estimator for 1−G(·). In addition, plug-in sample quantiles of non-diseased population in
the estimator (5) were used. This is called plug-in empirical likelihood method by Hjort,
McKeague and Keilegom (2009) [10]. They concluded that the limiting distribution of
the test statistic was a scaled chi-square under the null hypothesis.

Qin, Jin and Zhou (2011) [18] proposed a very complex bootstrap procedure to estimate
the scale constant. Adimari and Chiogna (2012) [1] combined jackknife with empirical
likelihood to test the pAUC. Yu, et al. (2016) [27] formulated a generalized empirical
likelihood test for AUC utilizing both samples, where they incorporated the variance of
AUC estimate to the empirical likelihood test statistic. Yang et al. (2017) [26] propose to
first use Jackknife to create some pseudo values, then construct a (one-sample) empirical
likelihood based on the pseudo values for statistical inference of pAUC.

One common theme in these approaches is that they all need some type of variance
estimator: either in the estimation of the scale factor or pre-process the data with a
jackknife. (an exception is the bootstrap percentile method). In contrast, the original
empirical likelihood method of Owen (1988) [15] does not involve a variance estimator
at all.

In this paper we propose and study a method based on a truly two sample empirical
likelihood. The limiting distribution of our empirical likelihood ratio, under null hypothesis,
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is chi-square without any scale adjustment, thus no variance estimation is needed (nor for the
scale factor). Our empirical likelihood is based on the two sample original observations, not
jackknife pseudo values.

Furthermore, in the inference for pAUC, instead of plug in an estimator for unknown
(1 − p)th quantile of X in (5), we used a nuisance parameter/profile trick to avoid explicitly
estimating this nuisance parameter. More specifically, we first artificially introduce a nuisance
parameter in addition to pAUC. This allows us to easily formulate empirical likelihood for
the two parameters jointly and then later apply the profiling technique to arrive the so called
profile empirical likelihood for pAUC alone. And a clean limiting chi-square distribution under
null hypothesis of H0 : pAUC = θ is again ensured.

Indeed, our empirical likelihood is in essence the empirical likelihood for the two sample
(generalized) U-statistic. And the chi square limit is ensured as long as min(m,n)→∞ and no
need to require m/(m+ n)→ λ ∈ (0, 1). In addition, the confidence interval of pAUC(p1, p2)
can be similarly obtained as for pAUC(0, p), by perform one more profiling/minimization
operation.

The advantage of Wilks confidence intervals over the Wald is a well known phenomena
discussed by many authors, see for example Meeker and Escobar, (1995) [14]. We gave a list in
the Discussion section later in this paper. Advantage of empirical likelihood confidence region
over pseudo empirical likelihood was discussed in Kim and Zhou (2019) [11].

2 Smoothing

In the previous section, the estimators of AUC, (2), and estimator of pAUC, (5), were defined
using the indicator function, and we treated the [Yj > Xi] and [Yj = Xi] case separately. If
we replace the indicator function by a smoothed version, we can handle these [Yj > Xi] and
[Yj = Xi] cases with one function. Smoothing the ROC curve is also proposed in Zou, Hall,
and Shapiro (1997) [33] among many others.

We hereby specify a typical smoothed indicator function. Since this function is going to
replace the indicator function I[y > x], we shall call it Iε(y, x) where the bandwidth parameter
ε > 0 controls the degree of smoothing. When ε→ 0, the function Iε(y, x) becomes the original
indicator function (except when x = y).

Iε(y, x) =


1 , if (x− y) < −ε ;

0.5− 3(x−y)
4ε

+ (x−y)3
4ε3

, if − ε ≤ (x− y) ≤ ε ;

0 ; if (x− y) > ε .

(6)

Other smoothing functions are also possible and should lead to similar results. We pick this
function because it is second order smooth and also fast to compute. Notice when y = x we
have Iε(y, x) = 0.5 always; and when x < y − ε, we have Iε(y, x) = 1 etc.

In addition, the estimator of pAUC, (5), involves the quantile τ = F−1(1−p). As mentioned
earlier, Dodd and Pepe (2003) [6] have used some smoothing when estimate the quantile in the
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course of estimate the pAUC. Also, using empirical likelihood for testing hypothesis involve
quantiles was investigated by Chen and Hall (1993) [4]. One take away message from Chen and
Hall paper is that the sample quantile function needs to be smoothed. The smoothing makes
the empirical likelihood ratio converge faster to the limiting chi square distribution (thus the
empirical likelihood ratio test is more accurate). Indeed smoothing is almost a must whenever
sample quantile is involved in any statistical analysis.

After a transformation, the defining equation for quantile τ becomes F (τ) = 1 − p which
can be written as

EI[X ≤ τ ] = 1− p . (7)

We recall F (·) is the unknown distribution function for Xi.

Chen and Hall (1993) [4] have carefully analyzed the error rates. The recommended choice
of smoothing bandwidth ξ should be > (1/m) logm and O(m−1/2) for best convergence rate
and O(m−3/4) if we also require Bartlett corrections, with m the sample size. We shall use a
bandwidth m−3/4 in our example and simulation. For details please see their paper.

We therefore shall also smooth the indicator function in (7) by Iξ(·, ·) and replace (7) by

EIξ(τ,X) = 1− p . (8)

Here the bandwidth ξ shall be chosen following Chen and Hall’s recommendation. The band-
width ε in (9) and (10) may follow other guidelines.

To summarize: we shall use the smoothed estimator of AUC

ÂUCε =
1

nm

m∑
i=1

n∑
j=1

Iε(Yj, Xi) . (9)

A smoothed estimator of pAUC can be similarly defined to (5):

̂pAUCε,ξ(0, p) =
1

mn

m∑
i=1

n∑
j=1

Iε(Yj, Xi) Iξ(Xi, τ) (10)

where the quantile τ is now defined by (8).

Finally, smoothing also brings a computational convenience for our profile calculation in
the next section, since a smoother function is easier to optimize.

3 Two Sample Empirical Likelihood

Owen (1988) [15] was first to coin the term “empirical likelihood” and made many contributions
to the theory and practice of empirical likelihood method. The first book on this fascinating
topic is also by Owen in 2001 [16]. One of the empirical likelihood theorems contained in this
book is the two-sample empirical likelihood theorem (his section 11.4). We formulate below a
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version specific for the inference of AUC (h function in (i)) and the joint inference of pAUC
and τ (h function in (ii)) below.

Theorem 1 (Two-Sample Empirical Likelihood Theorem) Suppose X1, · · · , Xm are
iid random variables with distribution F (t). We further suppose, independent of the X’s, that
Y1, · · · , Yn are iid random variables with distribution G(t). Let the true parameter θ ∈ Rr be
defined by the equation Eh(X, Y,θ) = 0, where h is a function with values in Rr specified
either in (i) or (ii) below.

(i) For the inference of AUC : here r = 1 and θ = AUC; and h(X, Y, θ) = {I[Y >
X] + 0.5I[Y = X]} − θ. We further assume Pr(Y ≥ X) 6= 1.

(ii) For the joint inference of pAUC(0, p) and the (1− p)th quantile, τ , of X: here
r = 2 and θ = (θ1, θ2) = (pAUC(0, p), τ); and h = (h1, h2) where

h1(X, Y,θ) = {I[Y > X] + 0.5I[Y = X]}I[X > θ2]− θ1
h2(X, Y,θ) = h2(X, θ2) = I[X ≤ θ2]− (1− p) .

(11)

We further assume 0 < p < 1; F ′(τ) > 0 and Pr(Y ≥ X|X > τ) 6= 1.

Define the two-sample empirical likelihood ratio

R(θ) = sup
ui,vj

{ m∏
i=1

mui

n∏
j=1

nvj ; s.t. ui > 0; vj > 0;
m∑
i=1

ui = 1;
n∑
j=1

vj = 1;

m∑
i=1

n∑
j=1

h(Xi, Yj,θ)uivj = 0
}
.

(12)

As sample size min(m,n) go to infinite, if θ is the true parameter value, we have

−2 logR(θ)
D−→ χ2

(r)

where χ2
(r) denotes a chi squared distribution with r degrees of freedom.

Proof: The empirical likelihood book of Owen (2001) section 11.4 contains a proof of this
theorem for the case r = 1. The conditions Owen imposed on the h functions are easy to check
with our h in (i) or (ii) above. For the case r = 2 the proof is similar. �

Remark: We have stated the conditions (i) and (ii) in Theorem 1 without smoothing due
to its clear connections to AUC/pAUC. If we apply the smoothing as detailed in previous
section, the h function in (i) or (ii) of Theorem 1 needs to be modified as follows: all the
indicator functions there shall be replaced by either Iε(·, ·) or Iξ(·, ·). Theorem 1 is still valid
after this smoothing modification: the chi square limit still hold for the −2 log empirical
likelihood ratio. However, the convergence to chi square will be faster with smoothing. When
profiling the empirical likelihood (next theorem), smoothing is not only a good idea but a
must.
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The empirical likelihood theorem above with an h specified in (i) immediately gives us a test
of AUC when sample sizes are reasonably large: for testing H0 : AUC = θ∗ vs. HA : AUC 6= θ∗

the p-value can be computed as Pr(χ2
(1) > −2 logR(θ∗)), where χ2

(1) denotes a chi-square

random variable with degree of freedom 1. The 95% confidence interval for AUC is

{θ∗| s.t. − 2 logR(θ∗) < 3.84146 = χ2
(1)(0.95)} .

For the test of the pAUC(0, p), however, some more work is needed. The above empirical
likelihood theorem, with h specified in (ii), only gives us a test of pAUC and τ jointly. We,
however, are most likely interested only in testing pAUC alone. This calls for a profiling of
the empirical likelihood ratio.

Profile empirical likelihood ratio is studied by Qin and Lawless (1994) [20]. They demon-
strated that under reasonable smoothness conditions (so that certain derivatives exist) the
profiling of empirical likelihood just behave the same as in the (well known) parametric likeli-
hood case. Owen (2001) [16] Chapter 3 also discussed this topic.

Theorem 2 (Profile Empirical Likelihood) Assume the same conditions specified in
Theorem 1 also hold here. We take the h function as specified in (ii) there (for pAUC and
τ) but with smoothed indicator functions as discussed in the Remark following Theorem 1.
Recall in this case r = 2 and θ = (θ1, θ2) = (pAUC, τ).

Define the profile log empirical likelihood ratio

W (θ1) = inf
θ2
−2 logR(θ) , (13)

where R(θ) is given in Theorem 1.

As sample size min(m,n)→∞, we have W (θ1)
D−→ χ2

(1) if θ1 is the true pAUC value.

Proof: See a proof in Qin and Lawless (1994) [20] Corollary 5 or Owen (2001) [16] Chapter
3. The proof was based on a two-term Taylor expansion of the log likelihood ratio. The required
smoothness conditions can be easily checked since we used smoothed indicator functions. �

Remark For parametric likelihood ratio tests, profile is a well known methodology. Also,
empirical likelihood ratio test itself can, in fact, be thought of as a profile likelihood ratio test:
where infinite dimensional nuisance parameters are profiled out, leaving only p parameters of
interest.

One consequence of Theorem 2 is that we can use W defined in (13) to test hypothesis
and construct confidence intervals for pAUC similar to those procedures we discussed after
Theorem 1, using −2 logR(θ∗) for AUC.

We shall discuss the computational methods for the empirical likelihood ratio defined in
Theorems 1 and 2 in next section. But here we end this section with an illustrative example:

Example 1: As a real data example we analyze the performance of the biomarker s100b
in the blood of patients at hospital admission after aneurysmal subarachnoid haemorrhage
(aSAH) as a predictor of their 6-month outcome. The data is from Robin et al. (2011) [21]
and more information can be found in Turck et al. (2010) [22]. It contains 113 patients, among
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which 41 are classified as poor outcome (diseased) after 6-month. The data values are recorded
with precision 0.01, we used a smoothing ε = 0.005. The quantile smoothing bandwidth ξ is
taken to be m−0.75 when analyzing pAUC.

The estimated AUC of the ROC curve for s100b is 0.73137; and the 95% confidence interval
using the empirical likelihood method is [0.62303, 0.82149]. We point out that our confidence
interval is non-symmetric, i.e. not centered at the estimator: 0.73137 6= (0.62303 + 0.82149)/2
which is a great feature of the Wilks type confidence intervals. The detailed computation
algorithm used is discussed in section 4, with actual R code in the Appendix. As a comparison,
the confidence interval for AUC obtained by pROC package ci.auc function is [0.63012, 0.83262]
using the ‘DeLong’ method, and using the bootstrap method we got [0.6265, 0.8276]. When
doing the bootstrap confidence interval (here and two more below) we set.seed(123) and
used 250,000 bootstrap repetitions.

Patients with poor post-aSAH outcome require specific health care management, therefore
the clinical test must be highly specific. A pAUC with specificity in the 80% to 100% range
maybe of interest. The estimator of pAUC(0, 0.2) here for biomarker s100b is 0.08061165. The
95% empirical likelihood confidence interval for the pAUC(0, 0.2) is [0.049708, 0.114085]. As
a comparison, the bootstrap 95% confidence interval is [0.05068, 0.1158] using pROC package.

Finally, as an illustration, the estimate of pAUC(0.2, 0.7) is 0.3726. The 95% empirical like-
lihood confidence interval for pAUC(0.2, 0.7) is [0.303962, 0.426242]. Using bootstrap method
provided by pROC package we got 95% confidence interval [0.2983, 0.4275].

4 Computation

The computation of the logR(θ) specified in (12) is not provided by the current R packages
like emplik, nor discussed in either books [16] and [29]. Therefore, it deserve a more detailed
investigation here.

To make the following easier to read, we shall spell out the details only for the h function
defined in (i) of Theorem 1, i.e. the case for only one parameter of AUC. The two parameters
case, pAUC and τ , is similar but formulas are longer to spell out.

First of all, the computation of logR(θ) in Theorem 1 is a typical optimization problem
over variables (u1, · · · , um, v1, · · · , vn) = x (say) . The objective function (to be maximized)
is

logR(θ) =

{∑
i

logmui +
∑
j

log nvj

}
. (14)

The constraints imposed on x = (u1, · · · , um, v1, · · · , vn) are

ui > 0; vj > 0; (15)∑
ui − 1 = 0;

∑
vj − 1 = 0; (16)∑

i

∑
j

uivjh(Xi, Yj, θ) = 0 . (17)
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The objective function,
∑

logmui +
∑

log nvj, is nonlinear. However, it is concave and
can be well approximated by quadratic functions locally. Thus a sequential quadratic pro-
gramming method should work well. Indeed, Chen and Zhou (2007) [3] have successfully used
the sequential quadratic programming in computing the empirical likelihood for one sample
right censored data.

The difficult, however, lies in the last constraint (17). It is quadratic in terms of x. Thus
even after we replace the objective with a quadratic function, this is a Quadratic Equality
Constrained Quadratic Programming problem. One possibility is to try also linearize the con-
straint. For work on this direction, see Wood, Do and Broom (1996) [25]. Another possibility
is that we may hold ui fixed and solve the problem for vj, then hold vj fixed and solve for
ui and alternating between them. We notice when ui (or vj) are held fixed, the problem is a
linear equality constrained quadratic programming problem and easier to solve.

On the other hand, we know the similar optimizing problem in one sample empirical likeli-
hood with a linear constraint can be solved quite satisfactorily via Lagrange multiplier method,
see Owen (1988, 2001) [15] [16]. In the said case, it reduces the optimizing over n variables to
solving r equations for r variables. Here r is the number of parameters and is fixed. Typically
r is much smaller than sample size n.

We shall explore this idea next.

4.1 Computation For Inference of AUC

Using Lagrange multiplier method for the above optimization problem (14) – (17), the La-
grangian is

L(ui, vj, γ, η, λ) =
m∑
i=1

logmui +
n∑
j=1

log nvj − γ
(∑

ui − 1
)
− η

(∑
vj − 1

)
−λ
∑
i

∑
j

uivjh(Xi, Yj, θ) .

(18)

Taking derivatives and set them to zero leads to

ui(λ, v1, · · · , vn) =
1

m+ λ
∑

j h(Xi, Yj, θ)vj
, i = 1, · · · ,m (19)

vj(λ, u1, · · · , um) =
1

n+ λ
∑

i h(Xi, Yj, θ)ui
, j = 1, · · · , n. (20)

The above two sets of equations plus the following (constraint requirement)∑
i

∑
j

h(Xi, Yj, θ)

[m+ λ
∑

k h(Xi, Yk, θ)vk] [n+ λ
∑

k h(Xk, Yj, θ)uk]
= 0 (21)

are the system of equations we need to solve to obtain maximized logR(θ). Notice there are
m + n + 1 equations for m + n + 1 variables (ui, vj, λ). Compared to the situation of Owen
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(1988) [15], we have m+n more equations here: namely (19) and (20). A direct solution seems
elusive. But the following iterative method works in our investigations.

Initialize u
(0)
i = 1/m and v

(0)
j = 1/n,

1. Plug u
(s)
i and v

(s)
j into equation (21), solve for λ, call the solution λ(s+1).

2. Using u
(s)
i and v

(s)
j and λ(s+1) obtained above, plug into the right hand side of equations

(19) and (20). This yields u
(s+1)
i , v

(s+1)
j .

3. With u
(s+1)
i and v

(s+1)
j , repeat steps 1–2 to obtain λ(s+2) and u

(s+2)
i , v

(s+2)
j .

4. Iterate until λ converges.

This is the algorithm we used when computing examples and carry out simulations. We
notice the equation (21) is monotone in λ, at least for those λ’s that make (19) and (20) a
probability.

An implementation of above is coming soon in our new package emplikAUC.

4.2 Computation For Inference of pAUC

The first step here is to compute the log empirical likelihood ratio logR(θ) where θ = (θ1, θ2).
Here θ and h are as defined in Theorem 1 equation ()11) but with smoothing. This is similar
to the calculation detailed in the above subsection for AUC except one constrain equation,
(21), becomes two constrain equations, (22) – (23) now, and λ = (λ1, λ2), h and θ are now
vectors of length two.

m∑
i=1

n∑
j=1

h1(Xi, Yj,θ)

[m+ λ>
∑

k h(Xi, Yk,θ)vk] [n+ λ>
∑

k h(Xk, Yj,θ)uk]
= 0 (22)

m∑
i=1

h2(Xi, θ2)

m+ λ>
∑

k h(Xi, Yk,θ)vk
= 0 (23)

The above two constrain equations plus (19) – (20), (with the obvious modification of λ→ λ,
h→ h and θ → θ), are the system of n+m+2 equations for n+m+2 unknowns (ui, vj, λ1, λ2)
we need to solve. The iterative algorithm detailed in the previous subsection also works well
here.

Now assume we have obtained logR(θ). The second step is the minimization (profiling)
of logR(θ) over θ2. This is an unconstrained minimization problem over one variable and an
obvious starting point for θ2 is the sample quantile τ̂ . In the simulation and examples, we
have used R function optimize to accomplish this.

The profile will yield logW (θ1) which can be used to test and construct confidence intervals
for pAUC.
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5 Simulations

We first compare the confidence intervals for AUC. The empirical likelihood method specified
in section 3 and 4, and those available in the R package pROC, namely DeLong and Bootstrap,
were used. The bootstrap repetitions were set to 5000. Results are listed in Table 1.

We see from Table 1 that

• When compared to both the DeLong and Bootstrap confidence intervals, the empirical
likelihood confidence intervals have shorter average length AND higher coverage prob-
abilities (only in one case it has equal coverage probability with Bootstrap, but with
shorter length). The differences are more profound for (smaller) sample sizes (60, 40),
less so for (100, 100).

• The errors for the empirical likelihood confidence intervals are more balanced. The
DeLong confidence intervals missed the true value too much on the “high” side (i.e.
lower confidence limits too high). The Bootstrap intervals are better than the DeLong,
but still worse than Empirical Likelihood.

• All the coverage probabilities are pretty close to the nominal 95% value for sample sizes
(100, 100) but have bigger gaps for (60, 40).

Next we will compare the confidence intervals for pAUC, the results are summarized in
table 2. We have used the bootstrap percentile method (BootPT) provided by the package
pROC, with bootstrap repetition set at 10,000. We also included two methods provided by
the tpAUC package, namely the method of "MW" (Mann-Whitney) and the method "expect".
Both methods from package tpAUC are using the same jackknife variance estimate to construct
Wald confidence intervals. Thus, the length of confidence intervals of these two methods are
exactly the same. The only difference is the center of the interval, i.e. the estimator.

Finally the entry “2EL” there is our empirical likelihood method described in sections 3
and 4.

We see from table 2 that

• The “2EL” confidence intervals have shortest average length . Yet at the same time it
has highest coverage probability, except in one case it tied with bootstrap as the two
highest coverage probabilities (case 150/150).

• Compared with other methods, the errors of the 2EL confidence intervals are more
balanced, i.e. missing the true pAUC value on the above/below with similar probability.
The worst one is the Mann-Whitney method – the confidence intervals missing the true
value mostly because it is too high.

• Among the two Wald methods with jackknife variance estimator, the method "expect"

performs better than "MW". According to [26] page 361, "expect" method is based on
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Table 1: Coverage Probability and Average Length of Nominal 95% Confidence Intervals
for AUC. I. X ∼ exp(1);Y ∼ exp(0.4). True AUC = 0.714286. II. X ∼ N(0, 1);Y ∼
N(µ = 2, sd = 2). True AUC = 0.814453. Based on 1000 runs. The middle column are the
probabilities of the intervals missing the true value on the above/below.

(m, n) Method Coverage Probability Average Length
(100, 100) DeLong 0.953 = 1− (0.034 + 0.013) 0.1421457
exp(1), exp(0.4) Boot 0.956 = 1− (0.030 + 0.014) 0.1416802

2EL 0.956 = 1− (0.024 + 0.020) 0.1406806
(80, 50) DeLong 0.939 = 1− (0.039 + 0.022) 0.1875612
exp(1), exp(0.4) Boot 0.938 = 1− (0.035 + 0.027) 0.1860194

2EL 0.943 = 1− (0.025 + 0.032) 0.1843396
(60, 40) DeLong 0.943 = 1− (0.041 + 0.016) 0.2120362
exp(1), exp(0.4) Boot 0.944 = 1− (0.036 + 0.020) 0.210127

2EL 0.951 = 1− (0.028 + 0.021) 0.2074215

(100, 100) DeLong 0.949 = 1− (0.036 + 0.015) 0.1234693
N(0,1), N(2,2) Boot 0.950 = 1− (0.031 + 0.019) 0.1228783

2EL 0.951 = 1− (0.025 + 0.024) 0.1225727
(80, 50) DeLong 0.924 = 1− (0.063 + 0.013) 0.168157
N(0,1), N(2,2) Boot 0.934 = 1− (0.047 + 0.019) 0.1665892

2EL 0.941 = 1− (0.031 + 0.028) 0.1549231
(60, 40) DeLong 0.927 = 1− (0.062 + 0.011) 0.1885157
N(0,1), N(2,2) Boot 0.937 = 1− (0.049 + 0.014) 0.1862026

2EL 0.954 = 1− (0.026 + 0.020) 0.1856122

an alternative estimator of the pAUC, namely

p̃AUC(0, p0) = p0 −
1

n

n∑
j=1

min{1− F̂n(Yj), p0} .

However, upon closer inspection, this estimator is exactly the same as the Mann-Whitney
estimator (5), except for tie breaker (when X = Y ). (proof available upon request). In
the simulation our random numbers never have ties, so the JackEX entry in table 2 is
a bona fide Mann-Whitney based confidence interval. A side note is that the Mann-
Whitney option "MW" from the package tpAUC likely have some bugs. Its performance is
also the worst among the four.

On a desktop computer with Intel i7-4790 processor and R version 4.1.1, it takes about 0.8
second to compute a 90% empirical likelihood confidence interval for pAUC(0, 0.3), for sample
size 80/120. For sample size 150/150, it takes about 4.2 second to compute such an empirical
likelihood confidence interval.
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Table 2: Coverage Probability and Average Length of Nominal 90% Confidence Intervals for
pAUC(0, 0.3). X ∼ N(0, 1);Y ∼ N(1, 1). Based on 1000 simulation runs.

(m, n) Method Coverage Probability Average Length
(50, 50) BootPT 0.905 = 1− (0.029 + 0.066) 0.08475382

JackMW 0.826 = 1− (0.016 + 0.158) 0.08660019
JackEX 0.909 = 1− (0.037 + 0.054) 0.08660019
2EL 0.918 = 1− (0.035 + 0.047) 0.08379997

(100, 100) BootPT 0.889 = 1− (0.037 + 0.074) 0.0600507
JackMW 0.846 = 1− (0.025 + 0.129) 0.06070723
JackEX 0.887 = 1− (0.045 + 0.068) 0.06070723
2EL 0.894 = 1− (0.044 + 0.062) 0.05977157

(150, 150) BootPT 0.901 = 1− (0.038 + 0.061) 0.04917168
JackMW 0.863 = 1− (0.025 + 0.112) 0.04950833
JackEX 0.898 = 1− (0.045 + 0.057) 0.04950833
2EL 0.901 = 1− (0.045 + 0.054) 0.04897593

(120, 80) BootPT 0.894 = 1− (0.038 + 0.068) 0.06031164
JackMW 0.864 = 1− (0.028 + 0.108) 0.06084894
JackEX 0.890 = 1− (0.047 + 0.063) 0.06084892
2EL 0.900 = 1− (0.044 + 0.056) 0.05989653

(80, 120) BootPT 0.893 = 1− (0.033 + 0.074) 0.06208052
JackMW 0.836 = 1− (0.018 + 0.146) 0.06299564
JackEX 0.891 = 1− (0.043 + 0.066) 0.06299564
2EL 0.897 = 1− (0.045 + 0.058) 0.06193831

Testing a given hypothesis for pAUC(0, 0.3) by empirical likelihood is much faster. For
example at sample size 150/150, it only takes about 0.05 to 0.08 second to do an empirical
likelihood test of hypothesis (i.e. obtain p-value). This is a unique feature of the empirical
likelihood method: that a testing hypothesis is much faster to compute than a confidence
interval.

The Bootstrap confidence interval for sample size 150/150 also takes about 4.2 seconds per
interval. We have set the bootstrap repetition to 10000.

The two Jackknife/Wald based method is much faster: for sample size 150/150 at about
0.15 second per confidence interval. Testing a hypothesis will be about the same speed.

6 Discussion and Concluding Remarks

To deal with the inference of pAUC, we view the estimation in the larger frame work of a
two-parameter problem, by explicitly include the nuisance parameter τ . This naturally lead to
the profile likelihood technique when inference for only one of the two parameters is needed.
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When sample sizes goes to infinite, the Wilks and the Wald type confidence intervals
(assume both available) are equivalent. However, for smaller samples, it is a generally accepted
fact that the Wilks confidence intervals have several advantages over the Wald confidence
intervals, see section 3 of Meeker and Escobar [14] and additional references there. The
disadvantage they mentioned for the Wilks method is the computational difficulty. But with
ever faster computers and publicly available software like R, this is much less of a problem
nowadays.

We list here briefly the advantages of Wilks confidence interval:

1). The Wilks confidence intervals are not necessary symmetric about the MLE, rather, it
tries to reflect the skewness in the given data.

2). The Wilks confidence intervals are always within the parameter space, while a Wald
confidence interval of a probability can include negative values, for example.

3). Once we obtained the Wilks confidence interval for a parameter θ, [a, b] (say), the Wilks
confidence interval for g(θ) is just [g(a), g(b)] (assuming g is increasing).

4). When using Wilks, there is no need to figuring out the variance of the MLE and
estimate it.

5). The actual error rates for Wilks intervals are often closer to the nominal than the Wald.

6). Bootstrap re-sampling based procedures rely on the random number generator and
the bootstrap repetitions used. A different seed or different number of repetitions will lead to
slightly different confidence intervals. Our empirical likelihood confidence interval do not have
this problem.

7). The Wilks confidence interval is based on likelihoods and there is well developed theory
to handle nuisance parameter in the likelihood analysis. We use this feature to handle nuisance
parameter in the inference of pAUCs.

Generalization of the empirical likelihood method proposed in this paper are possible.
We only mention one. For sample data that are collected via a biased sampling scheme, (for
example, test-result-dependent sampling, see [?]), the likelihood function can often be adapted
to reflect this new sampling scheme. Once this is done, the empirical likelihood method we
proposed in this paper can, in principle, be adapted to give a valid confidence interval, (mind
the computational complication).
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7 Appendix

R code for example 1.

The data set we used, aSAH, is from R package pROC. We also assume the packages pROC,
downloader, rootSolve and emplik2 are installed. These R packages can all be downloaded
at https://cran.r-project.org/web/packages/.

###### Get data set aSAH for marker s100b ######

library(pROC)

data(aSAH)

Xis <- aSAH$s100b[aSAH$outcome == "Good"]

Yis <- aSAH$s100b[aSAH$outcome == "Poor"]

library(downloader)

source_url("http://www.ms.uky.edu/~mai/Rcode/emplikAUC.R")

############ Get an estimator of AUC ############

rep(1/72, 72)%*%smooth3(x=Xis, y=Yis)%*%rep(1/41, 41)

## [,1]

## [1,] 0.7313686 ##### estimate of AUC #####

Now we compute the 95% confidence interval for AUC.

findULNEW(step=0.03, fun=ThetafunAUCone, MLE=0.73, x=Xis, y=Yis)

## $Low

## [1] 0.6230165

##

## $Up

## [1] 0.821502

##

## $FstepL

## [1] 7.450581e-09

##

## $FstepU
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## [1] 7.450581e-09

##

## $Lvalue

## [1] 3.84146

##

## $Uvalue

## [1] 3.84146

###### The 95% (default) confidence interval is seen to be [0.6230165, 0.821502] ###

###### If we just need to test a specific hypothesis, we may do the following #####

eltest4aucONE(x=Xis, y=Yis, true=0.821502, ind=smooth3, tol.u=1e-6, tol.v=1e-6,

tol.H0=1e-6)$"-2LLR"

## [1] 3.841464 ### Output is the -2log ELR value for testing AUC=true=0.821502.

eltest4aucONE(x=Xis, y=Yis, true=0.623016, ind=smooth3, tol.u=1e-6, tol.v=1e-6,

tol.H0=1e-6)$"-2LLR"

## [1] 3.841491 ### this chi square df1 value gives a p-value of 5%.
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Now for testing and confidence interval of pAUC(0, 0.2). We first get an estimator of τ
and pAUC(0, 0.2). The quantile estimator τ uses our smoothing, defined in section 3.

##### Use our smoothing to get estimators of 80th quantile and pAUC(0,0.2) #####

myEstPaucT(x=Xis, y=Yis, partial=0.2, eps=0.005, epsT=(72)^(-0.75))

## $‘tau(1-partial)‘

## [1] 0.2083099

##

## $‘Pauc(0,partial)‘

## [1] 0.08060994

#### The output value can change a little for other smoothing values of eps/epsT.

###### Jointly testing F^{-1}(0.8)=tau=0.19, pAUC(0, 0.2)=0.08, with null

###### distribution of chisq with 2DF ####

Profun(tau=0.19, pauc=0.08, partial=0.2, x=Xis, y=Yis) #### output omitted

###### Next, testing pAUC(0, 0.2)=0.08 alone, with null dist. = chisq 1DF #####

optimize(f=Profun,interval=c(0.154, 0.420),pauc=0.08,partial=0.2,x=Xis,y=Yis)

#### Output omitted. The "interval" is where we search for nuisance parameter. ##

#### The $objective in the output is the Wilks statistic: -2LLR(pAUC(0,0.2)=0.08) #

#### Verify the 95% confidence interval for pAUC(0,0.2) is [0.049810, 0.114224] ###

#### since testing the upper/lower bound, we get W(.) = chisq(0.95, df=1) ####

optimize(f=Profun,interval=c(0.154,0.420),pauc=0.114224,partial=0.2,x=Xis,y=Yis)

## $minimum

## [1] 0.1777186

##

## $objective

## [1] 3.841459

optimize(f=Profun,interval=c(0.154,0.420),pauc=0.049810,partial=0.2,x=Xis,y=Yis)

## $minimum

## [1] 0.3048885

##

## $objective

## [1] 3.841665

##### We may also use findULNEW( ) to find the confidence interval #####

findULNEW(step=0.03, fun=ThetafunPAUC, MLE=0.08061,x=Xis,y=Yis) #### output omitted

Same calculation, using faster code (but may be less robust).
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#### Jointly testing F^{-1}(0.8)=tau=0.19 and pAUC(0, 0.2) = 0.08

ProfunONE(tau=0.19, pauc=0.08, partial=0.2, x=Xis, y=Yis)

## [1] 0.3047554 ### This is -2 log ELR, null dist. is chi-square 2DF.###

#### Getting ready to search for confidence interval, ONE SIDE at a time.

#### When search for Upper confidence bound, nuiup = MLE of nuisance parameter tau.

findUnew(step=0.01, fun=ThetafunPaucONE, MLE=0.08061, x=Xis, y=Yis, nuilow=0.15,

nuiup=0.2083)

## $Up

## [1] 0.1142243

##

## $FstepU

## [1] 7.450581e-09

##

## $Uvalue

## [1] 3.84146

#### When search for Lower confidence bound, nuilow=MLE of nuisance parameter tau.

findLnew(step=0.01, fun=ThetafunPaucONE, MLE=0.08061, x=Xis, y=Yis, nuilow=0.2083,

nuiup=0.42)

## $Low

## [1] 0.04981065

##

## $FstepL

## [1] 7.450581e-09

##

## $Lvalue

## [1] 3.84146
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Finally, we shall test and find confidence interval for pAUC(0.2, 0.7). From above we know
by using our smoothing, the estimator of F−1(0.8) is 0.2083099. Similarly the estimator of
F−1(0.3) is 0.08346956 as seen below.

quantONE(x=Xis, prob=0.8)

## [1] 0.2083099

quantONE(x=Xis, prob=0.3)

## [1] 0.08346956

tauhat2 <- 0.2083099 ##### estimator of F^{-1}(0.8)=F^{-1}(1-partial1)

tauhat1 <- 0.08346956 ##### estimator of F^{-1}(0.3)=F^{-1}(1-partial2)

myeps <- (length(Xis))^(-0.75)

H11 <- smooth3(x=Xis, y=Yis)

H12 <- as.matrix( smooth3(x=Xis, y=rep(tauhat2, 41), eps=myeps) )

H13 <- as.matrix(1- smooth3(x=Xis, y=rep(tauhat1, 41), eps=myeps) )

H1 <- H11*H12*H13

rep(1/72,72)%*% H1 %*%rep(1/41,41)

## [,1]

## [1,] 0.3726 ###### estimator of pAUC(0.2, 0.7)####

##### Jointly test H_0: pAUC(0.2, 0.7)=0.37; F^{-1}(0.8)=0.208; F^{-1}(0.3)=0.084.

Profun2(tauVec=c(0.084, 0.208), pauc=0.37, partial1=0.2, partial2=0.7, x=Xis,y=Yis)

## [1] 0.01404179 #### so the p-value is 1-pchisq(0.01404179, df=3) = 0.9995593

###### To testing pAUC alone H_0: pAUC(0.2, 0.7) = 0.33.

###### We just need to minimize over tau1 and tau2 of the Profun2() output.

optim(par=c(0.083,0.208),fn=Profun2,pauc=0.33,partial1=0.2,partial2=0.7,x=Xis,y=Yis)

## $par

## [1] 0.08644508 0.25721451

##

## $value

## [1] 1.587815

##

## $counts

## function gradient

## 61 NA

##

## $convergence

## [1] 0

##

## $message

## NULL
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##### Or, using another minimization method, with box bounded search. #####

optim(par=c(0.083,0.208),fn=Profun2,pauc=0.33,partial1=0.2,partial2=0.7,

x=Xis,y=Yis,method="L-BFGS-B",lower=c(0.08,0.19),upper=c(0.09,0.27))

## $par

## [1] 0.08645122 0.25725144

##

## $value

## [1] 1.587816

##

## $counts

## function gradient

## 11 11

##

## $convergence

## [1] 0

##

## $message

## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

#### Either way we got -2LLR=1.5878. This gives a p-value of

#### 1-pchisq(1.5878, df=1) = 0.2076407. ####

##### For 95% confidence interval, we check:

##### testing H_0: pAUC(0,2, 0.7)=0.303962;

##### testing H_0: pAUC(0.2, 0.7)=0.426242

##### In both tests we got p-value of 0.05. Therefore the 95%

##### Confidence interval for pAUC(0.2, 0.7) is [0.303962, 0.426242].
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