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1. Introduction, Notation and Preliminary

Suppose the original lifetimes are

X1, · · · , Xn . (1.1)

They are non-negative, iid with a distribution F (·). However, these lifetimes are subject to

censoring. In the case of right censoring, we only observe

Zi =

{
Xi if Xi ≤ Ci
Ci if Xi > Ci

and ∆i =

{
1 if Xi ≤ Ci
0 if Xi > Ci

(1.2)

where Ci are the (right) censoring times.

A generalization of right censoring is double censoring (Chang and Yang 1987). In the

case of double censoring we only observe

Zi =


Xi if Yi ≤ Xi ≤ Ci
Ci if Xi > Ci
Yi if Xi < Yi

and ∆i =


1 if Yi ≤ Xi ≤ Ci
0 if Xi > Ci .
2 if Xi < Yi

(1.3)

In the above (Ci, Yi), i = 1, · · · , n are the left and right censoring times with Ci > Yi.

Let the observations be arranged such that Z1, · · · , Zk are the uncensored observations, i.e.

∆1 = 1, · · · ,∆k = 1. Notice Z1, · · · , Zk equal to X1, · · · , Xk here. The rest of the sample

Zk+1, · · · , Zn are the (either right or left) censored observations.
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In the Bayesian estimation of F (·) we need not make assumptions about the distributions

of the left and right censoring times Ci and Yi. Further, for right censored observations,

Yi need not exist. For left censored observations, Ci need not exist. The calculations are

conditioned on the observed censoring times. Thus the observations can be described in three

parts Z1, · · · , Zk where Xi = Zi; and Zk+1, · · · , Zm where Xi > Zi; and Zm+1, · · · , Zn, where

Xi < Zi.

Next we discuss interval censored data. The current status data or case 1 interval censored

data consist of an observed “inspection” time Ti, and the information whether Xi is larger

than or less than Ti (the status of Xi): (See Huang and Wellner (1996))

Ti , ∆i =

{
0 if Xi > Ti
2 if Xi < Ti .

Usually the “inspection” times Ti are assumed iid. Similar to the discussion above this iid

assumption does not make a difference in the Bayesian analysis. Therefore, in the Bayesian

analysis, the current status data is a special case of (1.3) where all the observations are either

left or right censored, i.e. k = 0.

In the case 2 of interval censoring, we assume X1, · · · , Xk are observed exactly (k non-

random, and may be zero), and only the observations Xk+1, · · · , Xn are interval censored,

and the following information is known:

(1) We observe n− k intervals. With some abuse of notation, we denote the intervals by

[Lj , Zj) for j = k + 1, · · · , n. (1.4)

(2) We know that Lj ≤ Xj < Zj .

This is called case 2 (or case k) of interval censored data by Huang and Wellner (1996).

Again notice we do not need to make assumptions about the distribution of Lj or Zj . There-

fore this fits both case 2 and case k of interval censoring of Huang and Wellner. To make the

notation consistent with the doubly censored case, we let Z1 = X1, · · · , Zk = Xk for directly

observable outcomes. The interval censored outcomes are [Lj , Zj) for j = k+1, · · · , n. Notice

when the interval [Lj , Zj) = [a,∞), this reduces to the case of a right censored data, and

when the interval [Lj , Zj) = [0, a), this reduces to the case of a left censored data. In that

sense, interval censoring is more general in that it includes double censoring as a special case.

In Bayesian analysis, the probability F (·) is random. We assume in this paper that

F (·) is distributed as a Dirichlet process with parameter α, a measure on the real line.

Under the Dirichlet process prior assumption, the probability measure P (A) =
∫
A dF has

the following property: given any partition of real line: A1, · · ·Au the joint distribution of
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the random vector (P (A1), · · · , P (Au)) has a Dirichlet distribution with parameter given by

α(A1), · · · , α(Au). For more discussion and properties of Dirichlet process prior, please see

Ferguson (1973), Susarla and Van Ryzin (1976) and Ferguson, Phadia and Tiwari (1993).

Another possibility is to work with the cumulative hazard functions H(t). A beta process

prior on the space of the cumulative hazard function was introduced by Hjort (1990). While

using a beta process prior for right censored data works well, it has no advantage over the

Dirichlet process prior for doubly/interval censored data. The likelihood of the data do not

simplify by using the hazard function with doubly censored data. Therefore, we will use the

Dirichlet process prior in this paper.

Using a squared error loss, Susarla and Van Ryzin (1976) obtained the Bayes estimator for

F (·) under Dirichlet process prior when data are only subject to right censoring. They also

showed that when the weight parameter, α, of the Dirichlet process prior approaches zero, the

non-parametric Bayes estimator reduces to the Kaplan-Meier estimator, the NPMLE. Some

later papers studied the consistency of the Bayes estimator (Susarla and Van Ryzin 1978)

and the posterior distribution (Ghosh and Ramamoorthi 1995). Huffer and Doss (1999) used

Monte Carlo methods to compute the nonparametric Bayes estimator.

We obtain the Bayes estimator of 1 − F (·) when data are subject to both right and left

censoring or are subject to interval censoring. The large sample properties of this Bayes

estimator are not discussed here. Though it is not unreasonable to expect that the Bayes

estimators are consistent. However, we show that for any sequence of priors the nonparamet-

ric Bayes estimators under squared error loss cannot always converge to the corresponding

NPMLE with doubly censored data. This is a bit surprising since in most cases, MLEs are

limits of Bayes estimators.

The Bayes estimator we obtained is more complicated than those with only right cen-

sored data, especially when there are many left censored or interval censored observations.

Nevertheless, it has an explicit formula that can easily be programmed with computer. In

contrast, the nonparametric maximum likelihood estimator (NPMLE) in the case of doubly

censored data or interval censored data does not have an explicit formula and requires iter-

ative method to compute the estimator. See Turnbull (1974), Chen and Zhou (1999), and

Fay (1999). Besides, (1) the Bayes estimator is always uniquely defined while the NPMLE

is often only defined up to an equivalent class. This non-uniqueness of the NPMLE makes

many important statistics like mean estimator difficult to define. The Bayes estimator do

not have this problem. (2) the Bayes estimator is also smoother than the NPMLE.
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To minimize the amount of new notation in addition to Susarla and Van Ryzin’s (1976)

paper, (here after SV) we use their convention (as SV did) that all observations are positive.

Obviously we can extend this to the case where observations have support in (−∞,∞) without

much difficulty.

2. Bayes estimator with right, left/interval censored observations

The Bayes estimator of 1 − F (·) under squared error loss of SV is the conditional ex-

pectation of 1 − F given all the observations. Similar to SV the conditional expectation is

computed in two steps: first given all the uncensored observations we find the conditional

distribution of 1−F . Second, given all the censored observations we compute the conditional

expectation, where the distribution of those lifetimes before censoring are given by the result

of the first step.

The following theorem specifies the conditional distribution of F (·) given all the uncen-

sored observations, which accomplishes the first step.

Theorem 1 The random probability measure P given all uncensored observations is

distributed according to the Dirichlet process with parameter β = α+
∑
uncensored δZi , where

δa is a unit measure on the point a.

The proof of this theorem is similar to SV (1976) and Ferguson (1973), and is given in

appendix.

Now, the conditional expectation of 1−F (u) = P [u,∞) is computed given the remaining

n− k − 1 censored observations: either Zk+1,∆k+1, · · · , Zn,∆n in the doubly censored case;

or [Lk+1, Zk+1), · · · , [Ln, Zn) in the interval censored case. Notice the original Xk+1, · · · , Xn

is now a random sample from a Dirichlet process with parameter β. Let Eβ denote the

expectation with respect to this Dirichlet process with parameter β.

2.1 One interval/left censored observation case

To fix idea and enhance readability, we first present in detail the Bayes estimator with many

right censored observations but with only one interval censored observation, denoted by

[Lw, Zw). (If Lw = 0 then this is left censored.) The general case with many interval/left

censored observations will be given later.

By the similar argument as in SV Corollary 1, the conditional expectation, Eβ , of 1 −

F (u) = P [u,∞) = P (X ≥ u) given all the right censored data and one interval censored
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observation is

ŜD(u) =
Eβ{P [u,∞)P [Lw, Zw)

∏
right−censored P [Zi,∞)}

Eβ{P [Lw, Zw)
∏
right−censored P [Zi,∞)}

. (2.1)

This is also the desired Bayes estimator of 1 − F (u). We shall abbreviate the subscript

of right− censored to r − c and left− censored to l − c and interval − censored to i− c.

Straightforward calculation yields

ŜD(u) =
EβP [u,∞){P [Lw,∞)− P [Zw,∞)}

∏
r−c P [Zi,∞)

Eβ{P [Lw,∞)− P [Zw,∞)}
∏
r−c P [Zi,∞)

=
Eβ{P [u,∞)P [Lw,∞)

∏
r−c P [Zi,∞)} − Eβ{P [u,∞)P [Zw,∞)

∏
r−c P [Zi,∞)}

Eβ{P [Lw,∞)
∏
r−c P [Zi,∞)} − Eβ{P [Zw,∞)

∏
r−c P [Zi,∞)}

=
Eβ©1− Eβ©2
Eβ©3− Eβ©4

. (2.3)

The four expectations in (2.3) are all of a same type and can be computed explicitly by the

Lemma below.

Given a set of positive numbers 0 < ak+1 < ak+2 < · · · < am < ∞, it partitions the

nonnegative half line R+ into intervals [0, ak+1), [ak+1, ak+2), · · · , [am,∞). By Theorem 1

the random vector P [0, ak+1), P [ak+1, ak+2), · · ·P [am,∞) has a Dirichlet distribution with

parameter vector (βk+1, · · · , βm+1) where βk+1 = β[0, ak+1), · · · , βm+1 = β[am,∞). The

measure β is given as before by β = α+
∑
uncensored δZi .

Lemma 1 (Susarla and Van Ryzin) With the notation above, we have

Eβ

m∏
i=k+1

P [ai,∞) =
m−k−1∏
i=0

(
i+

∑i
j=0 βm+1−j

i+ β(R+)

)
=

m−k−1∏
i=0

(
i+ β[am−i,∞)
i+ β(R+)

)
.

Proof: This is essentially SV (1976) Lemma 2 (a) with some extra simplifications. ♦

When α(R+) = 0 the expression on the right hand side of Lemma 1 is still well defined

unless there are no uncensored observations in the sample. In the example 2 of section three

later, there are no uncensored observation in the sample, we therefore do not discuss the limit

of the Bayes estimator as α(R+)→ 0 there.

Remark: It is clear from the definition of β that when α(R+) → 0, β is integer valued.

This implies that the expectation in Lemma 1 has a rational number value (finite product of

rational numbers) as α(R+)→ 0.
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2.2 Many interval/left censored observations

When data contains many interval and many right censored observations, the Bayes estimator

of 1− F (u) = P (X ≥ u) given all the data (censored or uncensored) is equal to

ŜD(u) =
Eβ{P [u,∞)

∏
i−c P [Lw, Zw)

∏
r−c P [Zi,∞)}

Eβ{
∏
i−c P [Lw, Zw)

∏
r−c P [Zi,∞)}

. (2.5)

When data contains many left and many right censored observations, the Bayes estimator

of 1− F (u) is

ŜD(u) =
Eβ{P [u,∞)

∏
l−c[1− P [Zw,∞)]

∏
r−c P [Zi,∞)}

Eβ{
∏
l−c[1− P [Zw,∞)]

∏
r−c P [Zi,∞)}

. (2.6)

Because left censored observation is a special case of interval censored observation as

pointed out in the previous section, we only present in detail below the Bayes estimator with

many interval/right censored observations.

Let us recall the identity

m∏
i=1

(bi − ai) =
∑

y1y2 · · · ym (2.7)

where yi = either bi or −ai and the summation is over all possible 2m choices. The integer

m is defined as m = #{i− c} = number of interval censored observations.

By using (2.7), we can rewrite∏
i−c

P [Lw, Zw) =
∏
i−c
{P [Lw,∞)− P [Zw,∞)} =

∑
P1P2 · · ·Pm

where each Pw = either P [Lw,∞) or −P [Zw,∞) and the summation is over all 2m different

choices.

To make the expression more specific we introduce the follow notation. Define vectors

ξ = (ξ1, · · · , ξm) where each ξi = either 0 or 1. There are 2m such vectors.

Given m interval censored observations, [Li, Zi), we define 2m sets of numbers (each of

size m) {ci(ξ), i = 1, 2, · · · ,m} where ci(ξ) = Li if ξi = 0 otherwise ci(ξ) = Zi.

Associate with each set of {ci(ξ), i = 1, · · ·m} we also define a sign: if the set contains

even number of Zi’s then the sign is positive, if the set contains odd number of Zi’s the sign

is negative, i.e. ± = (−1)
∑

ξi .

With these definition we can further rewrite∏
i−c

P [Lw, Zw) =
∑

P1P2 · · ·Pm =
∑
ξ

±
m∏
i=1

P [ci(ξ),∞)
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where the summation is over all 2m different ξ’s, and ± is the associated sign we defined

above.

Finally, we define new sets of numbers by adding r (r = #{r − c}) right censored obser-

vations Z1, · · · , Zr to {ci(ξ), i = 1, · · · ,m}:

{bj(ξ), j = 1, · · · ,m+ r} = {ci(ξ), i = 1, · · · ,m}
⋃
{Z1, · · · , Zr}.

For any sets of real numbers b1, b2, · · · , bk, we denote by b(−1), b(−2) · · · , b(−k) the reversely

ordered numbers (descending). So, b+(−i)(ξ), i = 1, · · · ,m+r is a set of m+r numbers ordered

from largest to smallest.

With these sets of numbers defined, the denominator of (2.5) can be written as

∑
Eβ

(
P1P2 · · ·Pm ×

∏
r−c

P [Zi,∞)

)
=
∑
ξ

±m+r∏
i=1

i− 1 + β[b+(−i)(ξ),∞)

i− 1 + β(R+)


where the summation is over 2m different ξ’s. We can similarly compute the numerator of

(2.5) except there is one more term, P [u,∞), included with the right censored observations.

Define

{b+j (ξ)} = {ci(ξ), i = 1, · · · ,m}
⋃
{Z1, · · · , Zr, u}.

Theorem 2 The nonparametric Bayes estimator of the survival function S(u) = 1−F (u)

with right censored and interval censored data under Dirichlet process prior is

ŜD(u) =
∑
Eβ
{
P1P2 · · ·Pm ×

∏
r−c P [Zi,∞)× P [u,∞)

}∑
Eβ
{
P1P2 · · ·Pm ×

∏
r−c P [Zi,∞)

} ,

=

∑
ξ

(−1)
∑

ξs
m+r+1∏
i=1

i− 1 + β[b+(−i)(ξ),∞)

i− 1 + β(R+)

∑
ξ

(−1)
∑

ξs
m+r∏
i=1

i− 1 + β[b(−i)(ξ),∞)
i− 1 + β(R+)

. (2.8)

The two sums in (2.8) are over all 2m possible ξ’s.

Admittedly the two summations above involves 2m terms when there are m interval

censored observations. Also, in the summations, there are both positive and negative terms

that will cancel and diminishing significant digits. Rounding errors will be magnified if we use

(2.8) directly. Our purpose here is to show that explicit formula exist for the Bayes estimators.

Simplifications/alternative formula are desirable and will be pursued in the future.

Remark: From Lemma 1 and Theorem 2, we can infer that the limit of the Bayes

estimator (2.8) when the α measure approaches zero is a step function, at least for u <
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maximum observed value. This is because all the Eβ involved will be step functions according

to Lemma 1. We can also infer that when the α measure approaches zero, the Bayes estimator

(2.8) is always rational number valued, since the Eβ involved are all rational number valued.

3. Examples

The examples presented here are either hand-calculated or obtained by using software (Exam-

ple 2 and the NPMLE in Example 1) we developed. We shall pay close attention to the limit of

the Bayes estimator when α→ 0 in the Dirichlet prior (non-informative prior), and compare

the estimator with NPMLE. The software used here are packaged as R (http://www.r-

project.org/) packages and can be found at

http://www.ms.uky.edy/~mai/research/

The software for computing NPMLE is also available at the above R site.

To minimize additional notation, we shall recycle the notation used by SV as much as pos-

sible. Assume Z(k+1), · · · , Z(m) are the ordered, distinct censored (both right and left/interval)

times among the sample (1.2). Assume there are no ties among the left/interval and right

censored observations (but ties within right censored observations are allowed). At each cen-

sored observation Z(i), k + 1 ≤ i ≤ m, let λi be the number of right censored observations

that equal to Z(i). Thus if there are 2 right censored observations equal to Z(i) then λi = 2.

If Z(j) is a left censored observation then λj = 0. To make the notation consistent, we define

Z(k) = 0 and Z(m+1) =∞.

Let N(u) be the number of uncensored and right censored observations that are larger

then or equal to u, i.e.

N(u) =
∑

j: ∆j=1

I[Zj≥u] +
m∑

i=k+1

λiI[Z(i)≥u] (3.1)

and let N+(u) = N(u+).

We reproduce here SV’s Bayes estimator (based only on the uncensored and right censored

observations of the sample (1.2)) in a slightly modified form:

For Z(l) ≤ u < Z(l+1) with k ≤ l ≤ m+ 1,

Ŝ(u) =
α(u,∞) +N+(u)
α(R+) +N+(0)

×
l∏

j=k+1

{
α[Z(j),∞) +N(Z(j))

α[Z(j),∞) +N(Z(j))− λj

}
. (3.2)
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We changed two things: (1) we added the nodes Z(j) for left/interval censored observa-

tions, though with zero λj ’s. (2) replaced n by N+(0).

Example 1 Let us look at an example with one left censored observation and 4 right

censored observations. These are the data used by SV (1976) but with an added left censored

observation at Z = 4.

The ordered observations with their censoring indicators are listed below.

Z ′is : 0.8 1.0 2.7 3.1 4 5.4 7.0 9.2 12.1
∆ : 1 0 0 1 2 1 0 1 0

Table 1. Data with one left and four right censored observations.

Let the Bayes estimator of SV based only on uncensored and right censored observations

be Ŝ(u), i.e. as defined in (3.2). Our estimator that takes into account one left censored

observation can be written as follows.

(1) For u > Zleft = 4. After tedious but straight forward simplification we get

ŜD(u) = Ŝ(u)×
α[0,1)+1
α(R+)+9 + α[1,2.7)

α[1,∞)+7 ×
α[1,∞)+8
α(R+)+9 + α[2.7,4)+1

α[2.7,∞)+6 ×
α[1,∞)+8
α(R+)+9 ×

α[2.7,∞)+7
α[1,∞)+7

α[0,1)+1
α(R+)+8 + α[1,2.7)

α[1,∞)+6 ×
α[1,∞)+7
α(R+)+8 + α[2.7,4)+1

α[2.7,∞)+5 ×
α[1,∞)+7
α(R+)+8 ×

α[2.7,∞)+6
α[1,∞)+6

.

For u in other time intervals, the estimator can be similarly expressed as the product of

Ŝ(u) and some other term, the details are omitted. The plot the Bayes estimator is given in

Figure 1.

Next we compute the limit of the Bayes estimator. When α → 0, the Susarla and Van

Ryzin estimator, Ŝ(u), has the limit of the Kaplan-Meier estimator SKM . Our estimator has

the limit as α→ 0 :

For 9.2 ≤ u < 12.1, the limit equals to SKM × 70
81 = 7

8 ×
4
5 ×

3
4 ×

1
2 ×

70
81 = 0.2268519. For

u in other intervals the limit can be computed similarly.

We plot the estimator with α(u,∞) = B exp(−θu). The plot shows estimators for B =

8, θ = 0.12 and B = 0.001, θ = 0.12. The latter is indistinguishable in appearance with the

limit just calculated.

Computation of the NPMLE for doubly censored data can be done by EM type iteration

(see Turnbull (1974), Chen and Zhou (1999)). For the data in the table 1 we obtain the

following NPMLE by software:

t 0-0.8 0.8-3.1 3.1-5.4 5.4-9.2 9.2-12.1
NPMLE 1 .8457284 .6028477 .4521358 .2260679

Limit Bayes 1 .8425926 .6049383 .4537037 .2268519

Table 2. NPMLE and limit of Bayes estimator for data in table 1
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The differences between the NPMLE and the limit of the nonparametric Bayes estimator

are small but real. The likelihood of the distribution in table 2 is larger than those of the

limit of the Bayes estimator. (3.70674× 10−5 v.s. 3.704924× 10−5.)

Example 2: We took the first 10 observations from the breast cosmesis data with radi-

ation of Finkelstein and Wolfe as reported by Fay (1999). Out of the 10, there are 4 right

censored observations, 4 interval censored observations and 2 left censored observations (i.e.

interval censored with left-ends = 0).

Data: [45,∞), [6, 10), [0, 7), [46,∞), [46,∞), [7, 16), [17,∞), [7, 14), [37, 44), [0, 8) .

We compute the nonparametric Bayes estimator with α(u,∞) = B exp(−θu). The re-

sulting estimator with B = 8 and θ = 0.3 is computed using the software we developed and

plotted in Figure 2.

In the following two examples, the Bayes estimators are obtained with formula (2.8) and

then we let α(R+)→ 0 to obtain the limit. The NPMLE’s are also calculated not by software

but analytically.

Example 3 Here we took a small example with one left and one right censored observa-

tion. The NPMLE and limit of non-parametric Bayes estimator turns out to be exactly the

same.

Z ′is : Z(1) Z(2) Z(3) Z(4) Z(5)

∆ : 1 0 2 1 1
Jump of 1− F̂ (u) 0.4 0 0 0.3 0.3

Table 4. Data with one left and one right censored observation.

Example 4 The order of two censoring indicators in the above table are switched and the

NPMLE is different from the limit of Bayes estimator. The limit of Bayes estimator is not

self-consistent either. To calculate the NPMLE, we first note for this data the NPMLE F (·)

have only three jumps at Z(1), Z(3) and Z(5). Denote the jumps by p1, p2, p3. By symmetry

we must have p1 = p3. Using the constraint
∑
pi = 1, we can reduce the likelihood, L =

p1(p2 +p3)p2(p1 +p2)p3, to a function of only p2. Straightforward calculation show p2 =
√

5/5

maximizes the likelihood. Therefore p1 = p3 = (5−
√

5)/10 which is the entry 0.2763932 in

the table.

Z ′is : Z(1) Z(2) Z(3) Z(4) Z(5)

∆ : 1 0 1 2 1
Jump of limit Bayes 0.28000 0 0.44000 0 0.28000

Jump of NPMLE 0.2763932 0 0.4472136 0 0.2763932
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Remark: This example showed that with positive probability, the NPMLE 1 − F̂ (·)

for doubly/interval censored data can take irrational number values. A closer look at the

Example 4 provides some insight as why the two estimators are different, as described in next

section.

Remark: Example 3 and 4 reveal two different situations. The difference is that left

and right censored data overlap (right censored observation is smaller then the left censored

observation) in example 4. The overlap in Example 3 is not real, since there is no probability

mass inside the overlap.

4. Limit of Bayes and NPMLE

In this section we formally summarize some results concern the limit of Bayes and the NPMLE

in doubly/interval censored data case. The argument below is valid for any prior, not just

the Dirichlet process prior.

Theorem 3. Suppose a sequence of prior, πv; v = 1, 2, · · ·, is such that the (nonpara-

metric) Bayes estimators 1 − F̂v(·) under squared error loss, converge to the Kaplan-Meier

estimator whenever the data has only right censoring. Then this same sequence of Bayes

estimators cannot converge, in general, to the NPMLE for interval/doubly censored data.

Proof: The Bayes estimator under squared error loss can be written as

1− F̂v(u) =
EπP [u,∞)LF (data)

EπLF (data)
,

where LF (data) is the likelihood of the data when its distribution is F .

The assumption of the Theorem for right censored data says that as v → ∞ we always

have
Eπ{P [u,∞)

∏
r−c

P [xi,∞)
∏

uncensor

P ({xj})}

Eπ
∏
r−c

P [xi,∞)
∏

uncensor

P ({xj})}
→ 1− FK−M (u) . (4.1)

Notice the Kaplan-Meier estimator, FK−M (u), is always rational number valued.

Now we look at a particular sample configuration with just one left censored observation,

for example, the data as in Example 4. The Bayes estimator for this data can be written as

EπP [u,∞)P ({Z1})P [Z2,∞)P ({Z3})P [0, Z4)P ({Z5})
EπP ({Z1})P [Z2,∞)P ({Z3})P [0, Z4)P ({Z5})

.

Let us use the notation P (Z) = P ({Z}), and P (Z+) = P [Z,∞). Write P [0, Z4) = 1 −
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P [Z4,∞) = 1− P (Z+
4 ) and expand to get

=
EπP (Z1)P (Z3)P (Z5)P (Z+

2 )P (u+)− EπP (Z1)P (Z3)P (Z5)P (Z+
2 )P (Z+

4 )P (u+)
EπP (Z1)P (Z3)P (Z5)P (Z+

2 )− EπP (Z1)P (Z3)P (Z5)P (Z+
2 )P (Z+

4 )
(4.2)

If we divide the numerator of (4.2) by EπP (Z1)P (Z3)P (Z5)P (Z+
2 )P (u+) then as v →∞,

the numerator will converge to the limit: 1 − [1 − F ∗K−M (Z4)] according to (4.1). Here the

Kaplan-Meier estimator is based on three uncensored observations: Z1, Z3, Z5 and two right

censored observations: Z2, u.

Similarly, if we divide the denominator of (4.2) by EP (Z1)P (Z3)P (Z5)P (Z+
2 ) then it has

the limit 1− [1−F ∗∗K−M (Z4)], where the Kaplan-Meier estimator is based on three uncensored

observations, Z1, Z3, Z5 and one right censored observation Z2.

In other words, multiply (4.2) by

EπP (Z1)P (Z3)P (Z5)P (Z+
2 )

EπP (Z1)P (Z3)P (Z5)P (Z+
2 )P (u+)

(4.3)

then it will have a rational limit. This factor, (4.3), itself have a rational limit as v → ∞ (

= [1− F ∗∗K−M (u)]−1). This imply the limit of (4.2), as v →∞, is

F ∗K−M (Z4)
F ∗∗K−M (Z4)

× [1− F ∗∗K−M (u)] .

But that cannot be the NPMLE as Example 4 show the NPMLE is irrational valued.

That also serve as the proof for the interval censored case since the left censored obser-

vation is just [0, Z(4)) interval censored. ♦

Corollary 1. There is no sequence of priors, πv, such that the resulting sequence of

Bayes estimators under squared error loss, 1− Fv(·), always converge to the NPMLE in the

interval/doubly censored data case.

Proof: Suppose, to the contrary, there is such a sequence of prior. Since right censoring is

a special case of double/interval censoring (zero left censoring or all intervals are of the form

[ai,∞)), this sequence of estimators must converge to the Kaplan-Meier estimator with such

data. But by Theorem 3 such sequence cannot converge to the NPMLE for doubly/interval

censored data case in general. ♦

5. Discussion

The formula (2.8) has 2m (exponential order) terms when there are m interval censored

observations. While we do not have a formal proof that the computation of the Bayes
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estimator cannot be reduced to polynomial order, it is not hard to see that the computation

is equivalent to

∫
· · ·
∫ ∏

j

(
j∑
r=1

xr)
∏
j

(1−
j∑
r=1

xr)(1−
∑

xj)βm
∏

x
βj
j

∏
dxj ;

on the region xj > 0 and
∑
xj ≤ 1. We believe it cannot be reduced to the polynomial order.

Remark: The irrational value of NPMLE with doubly censored data also imply that the

EM algorithm, if started from the Kaplan-Meier estimator, cannot converge in finite steps in

general.

I thank C. Srinivasan for many helpful discussions.
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Appendix: We only sketch the proof for the doubly censored case. The probability of (∆ =
1, X = u) is (see Chang 1990, (1))

(SC(u)− SY (u))dP (X ≤ u)

Recall the marginal distribution of X is α(u)
α(R+) .

∫
[∆=1,Z∈A]

(A.1) =
∫

[u∈A]

D(·|α(B1) + du(B1), · · · , α(Bl) + du(Bl))(SC(u)− SY (u))d
α(u)
α(R+)

=
l∑

j=1

D(y1, · · · , yl|α(j)
1 , · · · , α(j)

l )
∫

[u∈A∩Bj ]
(SC(u)− SY (u))d

α(u)
α(R+)

On the other hand,

P{P (Bi) ≤ yi, i = 1, · · · , l; ∆ = 1, Z ∈ A)}

=
∫ ∞
u=0

P{P (Bi) ≤ yi, i = 1, · · · , l;X ∈ [u, u+ du) ∩A}(SC(u)− SY (u))

l∑
j=1

∫
α(Bj ∩A ∩ [u, u+ du)

α(R+)
(SC(u)− SY (u))D(y1, · · · , yl|α(j)

1 , · · · , α(j)
l )

=
l∑

j=1

D(y1, · · · , yl|α(j)
1 , · · · , α(j)

l )
∫
Bj∩A

(SC(u)− SY (u))
α(R+)

dα(u)

Figure 1: Plot for Example 1.
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Figure 2: Plot for Example 2.
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