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Summary

Empirical likelihood ratio method (Thomas and Grunkmier 1975, Owen 1988, 1990, 2001)
is a general nonparametric inference procedure that has many nice properties. Recently
the procedure has been shown to also work with censored data with various parameters
and the nice properties also hold there. But the computation of the empirical likelihood
ratios with censored data and/or complex setting is often non-trivial. We propose to
use sequential quadratic programming (SQP) method to overcome the computational
problem.

Examples are given in the following cases: (1) right censored data with a parameter of
mean; (2) Interval censored data.
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1. Introduction

Empirical likelihood ratio method was first used by Thomas and Grunkmier (1975) in con-

nection with the Kaplan-Meier estimator. Owen (1988, 1990, 1991) and many others developed

this into a general methodology. It has many desirable statistical properties, see the recent book

of Owen (2001). A crucial step in applying the empirical likelihood ratio method is to find the

maximum of the log empirical likelihood function (LELF) under some constraints. In all the

papers mentioned above, that is achieved by using the Lagrange multiplier method. It reduces

the maximization of n probabilities to a set of p monotone equations (for the multiplier λ), and

p is fixed and much smaller then n. These equations can easily be solved.

Recently the empirical likelihood ratio method has been shown to also work with censored

data and parameter of mean. Pan and Zhou (1999) showed that for right censored data the

empirical likelihood ratio with mean constraint also have a chi-square limit (Wilks theorem).

Murphy and Van der Vaart (1997, 2000) demonstrated, among other things, that the Wilks

theorem hold for doubly censored data too.

Theorem 1 (Pan and Zhou) For the right censored data (1) with a continuous distribution

F , if the constraint equation is ∫
g(t)dF (t) = θ0
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where θ0 is the true value (i.e. θ0 =
∫
gdF0 ) and g(t) satisfies certain regularity conditions,

then as n→∞, the empirical likelihood ratio

−2 logELR(θ0) D−→ χ2
(1) .

Theorem 2 (Murphy and Van der Vaart) For doubly censored observations, suppose

the distribution functions of the random variables involved are continuous and satisfy certain

other regularity conditions. Let g be a left continuous function of bounded variation which, is

not F0-almost everywhere equal to a constant. If
∫
gdF0 = θ0, then the likelihood ratio statistic

for testing H0 :
∫
gdF = θ0 satisfies −2 logELR(θ0) converges to χ2

(1) under F0.

However, in the proofs of the Wilks theorem for the censored empirical likelihood ratio in the

above theorem/papers, the maximization of the log likelihood is more complicated then straight

use of Lagrange multiplier. It is more of an existence proof rather then a constructive proof. In

fact it involves least favorable sub-family of distributions and the existence of such, and thus

it do not offer a viable computational method for the maximization of the empirical likelihood

under constraint.

Therefore the study of computation method that can find the relevant empirical likelihood

ratios numerically is needed and crucial for the above nice results to become reality in practice

when analyzing censored data. We propose to use the sequential quadratic programming (SQP)

method to achieve that. In fact it can compute empirical likelihood ratio in many other cases

(for example, interval censored data) where a simple Lagrange multiplier computation is not

available.

One drawback of the SQP method is that it becomes more memory/computation intensive

for larger sample sizes, n. This should contrast to the Lagrange multiplier method mentioned

above where p remains fixed as sample size n increases. However, we argue that this is not a

major drawback because (1) the nice properties of the empirical likelihood ratio method are

most visible for small to medium sample sizes. For large samples there often are alternative,

equally good methods available. (2) By our implementation of the SQP method in R (Gentleman

and Ihaka, 1996), we can easily handle (about 1 minute) sample sizes of up to 2000 on today’s

average PC (1 GHz, 256MB). No doubt our implementation may be improved (eg. implement it

in C). And with memory getting cheaper, this drawback should diminish and not pose a major
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handicap for the usefulness of the SQP method in empirical likelihood.

To fix an idea we now introduce the notation and setup of the right-censored data with the

mean constraint case.

Example 1 Suppose i.i.d. observations X1, · · · , Xn are subject to right censoring so that we

only observe

Zi = min(Xi, Ci) ; δi = I[Xi≤Ci], i = 1, 2, . . . , n; (1)

where C1, · · · , Cn are censoring times.

The log empirical likelihood function (LELF) for the censored observations (Zi, δi) is

LELF =
n∑
i=1

δi logwi + (1− δi) log

 ∑
Zj>Zi

wj

 . (2)

To compute the Wilks statistic for test hypothesis, we need to find the maximum of the

above LELF under the constraint

n∑
i=1

wiZiδi = µ ,
n∑
i=1

wiδi = 1 , wi ≥ 0 ;

where µ is a given constant. The straight application of Lagrange multiplier method do not leads

to a simple solution. Doubly censored data and other censoring leads to the same difficulty.

We show how to use the sequential quadratic programming method (SQP) to compute the

above empirical likelihood and the likelihood ratio in section 3, and comment on how to similarly

use it to compute empirical likelihood ratio in many other cases. Examples and simulations are

given in section 5.

2. The Sequential Quadratic Programming Method

There is a large amount of literature on the nonlinear programming methods, see for example

Nocedal and Wright (1999) and reference there. The general strictly convex (positive definite)

quadratic programming problem is to minimize

f(x) = −aTx +
1
2
xTGx , (3)

subject to

s(x) = CTx− b ≥ 0 , (4)
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where x and a are n-vectors, G is an n×n symmetric positive definite matrix, C is n×m (m < n)

matrix, b is an m-vector, and superscript T denotes the transpose. The algorithm of Goldfarb

and Idnani (1983) to solve the QP problem is very stable numerically and available in many

packages like Matlab or R. In this paper, the vector x is only subject to equality constraints

CTx − b = 0. This makes the QP problem easier to solve. In next section we shall show

that we can introduce a few new variables in the maximizing of the censored LELF (2) so that

the matrix G is always diagonal, which further simplifies the computation. Therefore instead

of use general QP algorithm, we implemented our own version in R which takes advantage of

the said simplifications. The specific QP problem can be solved by performing one matrix QR

decomposition, one backward solve, and one forward solve of equations.

Iteration is needed in the QP since the quadratic approximation to LELF is only good locally.

The matrix G is the second derivative of LELF and is diagonal (see next section), the column

vector a (of length n) is the first derivative of LELF. Both derivatives should be evaluated at

the best current solution x(i−1).

Since all our constraints are equality constraints, one way of solve the minimization problem

(3) is to use (yet again) the Lagrange multiplier:

min
x,η

− aTx +
1
2
xTGx− ηT [CTx− b]

where η is a column vector of length m. Taking derivative with respect to x and set it equal to

zero, we get

Gx− a−Cη = 0 .

We can solve x in terms of η to get

x = G−1[a + Cη] . (5)

Since the matrix G is diagonal, the inverse G−1 is easy to get. Finally we need to solve for

η. Substitute (5) into CTx = b we get

CT (G−1[a + Cη]) = b

which is, upon rewriting,

CTG−1Cη = b−CTG−1a . (6)
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Once we get the solution η from this equation we can substitute it back into (5) above to

get x.

In the iteration, the matrix C and vector b do not change, only the diagonal matrix G and

the vector a needs to be updated, because they are the derivatives of the log likelihood function

at current solution.

One way to solve (6) is to use QR decomposition. If CTG−1/2 = RQ then the above equation

can be rewritten as

(RQQTRT )η = b−RQG−1/2a

(RRT )η = b−RQG−1/2a

RT η = R−1b−QG−1/2a (7)

The solution of (7) can be obtained by using back-substitute (twice) and one matrix-vector

multiplication, which are low cost operation numerically.

We are interested in maximizing LELF, or minimize the negative LELF. This is a nonlinear

programming problem. Since it is hard to find minimum of negative LELF directly in many

cases, and the negative LELF is often convex, we use a quadratic function to approximate it.

Starting from an initial probability w, we replace the nonlinear target function (-LELF) by a

quadratic function which has the same first and second derivatives as the negative LELF at the

location of initial probability. QP method is used to find the minimum of the quadratic function

subject to the same given constraints. Then we update the quadratic approximate which now

has the same first and second derivatives as the negative LELF at the location of the updated

probability (the minimum of previous quadratic function). QP method is used again to find

the minimum of the new quadratic approximate function under the same constraints. Iteration

ends until the predefined convergence criterion is satisfied. When the information matrix is

positive, the quadratic approximation is good at least in a neighborhood of true MLE. Thus,

when converged, the solution gives the correct MLE under given constraint.

3. Likelihood Maximization with Right Censored Data

We now describe the SQP method that solves the problem in Example 1. The implementation

for doubly censored data, interval censored data are similar. We only give the detail for right

censored data here.
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When data are right-censored as in (1), the LELF becomes more complicated, we can rewrite

(2) as

LELF = L(w) =
k∑

i=1,δi=1

logwi +
n−k∑

l=1,δl=0

log

 ∑
Zj>Zl,δj=1,1≤j≤k

wj

 , (8)

where k is the number of uncensored observation, Z is the ordered observation, i.e. Z1 ≤ Z2 ≤

. . . ≤ Zn. We describe below two ways to implement SQP method for finding the constrained

MLE.

The first, simple minded implementation of QP, would just take the w in (8) as x, which has

length k, the length of the vectors a is k and matrixes G is k×k. The second derivative matrix G

in the quadratic approximation is dense and the computation of the inverse/QR decomposition

is expensive numerically.

A second and better way of use the SQP with censored data will first introduce some auxiliary

variables Rl = P (Z ≥ Zl), one for each censored observations, this enlarges the dimension of

vectors (a, x, b) and matrix (G, C) in (3), but simplifies the matrix G. In fact G will be

diagonal, so that we can directly plug-in the inverse of decomposition matrix of G. It speeds up

the computation tremendously.

We illustrate the two methods for the problem described in Example 1. In method one, since

we know wi > 0 only when the corresponding δi = 1, we would separate the observations into

two groups: Z1 < · · · < Zk for those with δ = 1 and Z∗1 < · · · < Z∗n−k for those with δ = 0. The

first derivative of log likelihood function is:

∂L(w)
∂wi

=
1
wi

+
n−k∑
l=1

I[Zi>Z∗l ]∑
Zj>Z∗l ,δj=1,1≤j≤k wj

,

Let us define Ml =
∑

Zj>Zl,δj=1,1≤j≤k
wj , Then

a =



1
w1

+
n−k∑
l=1

I[Z1>Z∗l ]

Ml

1
w2

+
n−k∑
l=1

I[Z2>Z∗l ]

Ml

...
1
wk

+
n−k∑
l=1

I[Zk>Z
∗
l

]

Ml


.
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Taking the second derivative with respect to wi, i = 1, 2, . . . , k:

∂2L(w)
∂2wi

= − 1
wi
−
n−k∑
l=1

I[Zi>Z∗l ]

M2
l

,

and with respect wq and i 6= q:

∂2L(w)
∂wi∂wq

= −
n−k∑
l=1

I[Zi>Z∗l ]I[Zq>Z∗l ]

M2
l

=
∂2L(w)
∂wq∂wi

.

Therefore the second derivatives G is

G =



1
w2

1

+
n−k∑
l=1

I[Z1>Z∗l ]

M2
l

∑n−k
l=1

I[Z1>Z∗l ]I[Z2>Z∗l ]

M2
l

. . .
∑n−k
l=1

I[Z1>Z∗l ]I[Zk>Z
∗
l

]

M2
l∑n−k

l=1

I[Z2>Z∗l ]I[Z1>Z∗l ]

M2
l

1
w2

2

+
n−k∑
l=1

I[Z2>Z∗l ]

M2
l

. . .
∑n−k
l=1

I[Z2>Z∗l ]I[Zk>Z
∗
l

]

M2
l

...
...

...
...∑n−k

l=1

I[Zk>Z
∗
l

]I[Z1>Z∗l ]

M2
l

∑n−k
l=1

I[Zk>Z
∗
l

]I[Z2>Z∗l ]

M2
l

. . .
1
w2
k

+
n−k∑
l=1

I[Zk>Z
∗
l

]

M2
l


,

x =


w1 − w?1
w2 − w?2

...
wk − w?k

 , C =


1 Z1

1 Z2
...

...
1 Zk

 .

We always use an initial value w0 that is a probability but may not satisfy the mean constraint.

Therefore b0 = (0, µ− Z̄). For subsequent iterations we have b = (0, 0) since the current value

of w already satisfies both constraints.

For this QP problem, the matrix G must be positive definite. We shall show that indeed it

is so here.

Theorem 3: The G matrix defined above is positive definite.

Proof: Separate G into two parts: G = A +
∑n−k
l=1 Bl , where

A =



1
w2

1

0 . . . 0

0
1
w2

2

. . . 0

...
...

...
...

0 0 . . .
1
w2
n


;

7



Bl = e v vT , where

e =
1

(Ml)2
, vT =

(
I[Z1>Z∗l ] , I[Z2>Z∗l ] , . . . I[Zk>Z

∗
l

]

)
.

Let m be any k-vector,

mTBlm = mT (evvT )m = e(vTm)T (vTm) = ezTz = e
k∑
i=1

z2
i ≥ 0 .

This shows Bl is semi-positive definite for l = 1, 2, . . . , n − k,
∑n−k
l=1 Bl is also semi-positive

definite. Therefore, since A is clearly positive definite, G is the summation of a positive and a

semi-positive definite matrix. It is positive definite. ♦

In the second and better SQP implementation, we introduce new variablesRl =
∑
Zj>Z∗l ,δj=1,1≤j≤k wj ;

one for each censored observation Zl. If we identify x as the vector (w,R), then the log likelihood

function becomes

L(x) = L(w,R) =
k∑

i=1,δi=1

logwi +
n−k∑

l=1,δl=0

logRl .

To find the quadratic approximation of L(x), we need to compute two derivatives. The first

derivative with respect to w and R is

∂L(w,R)
∂wi

=
1
wi

, i = 1, 2, . . . , k,

∂L(w,R)
∂Rl

=
1
Rl

, l = 1, 2, . . . , n− k.

So the vector a (n × 1) in the quadratic programming (3) becomes much simpler with entries

either equal to
1
wi

or
1
Rl

depending on the censoring status of the observation. The second

derivative of L with respect to w and R is

∂2L(w,R)
∂2wi

= − 1
w2
i

,
∂2L(w,R)
∂2Rl

= − 1
R2
l

,
∂2L(w,R)
∂wi∂Rl

= 0 ,

i = 1, 2, . . . , k, l = 1, 2, . . . , n− k.

Therefore the matrix G (n×n) in the quadratic approximation (3) is diagonal. The ith diagonal

element of G is either
1
w2
i

or
1
R2
l

depending on whether this observation is censored or not. Since

G is a diagonal matrix, it is trivial to find the inverse of the decomposition matrix of G, say

H−1, such that HTH = G. H−1 is also a diagonal matrix with entries wi or Rl corresponding

to censored status. Many QP solvers including the one in R package quadprog can directly

8



use H−1 to calculate the solution much faster than the previous method. Now, because we

introduced new variables Rl, they bring (n− k) extra constraints, i.e.

(1) : R1 =
∑

Zj>Z∗1 ,δj=1,1≤j≤k
wj ,

...

(n− k) : Rn−k =
∑

Zj>Z∗n−k,δj=1,1≤j≤k
wj .

These plus the two original constraints (using the original Z1 < · · · < Zn)

n∑
i=1

wiδi = 1 ,
n∑
i=1

wiZiδi = µ ,

would make the constrained matrix C to be n× (n−k+ 2). The first two columns for the above

two original constraints will be 
δ1 δ1Z1

δ2 δ2Z2
...

...
δn δnZn

 .

The rest of columns depend of the positions of censored observations. If the observation is cen-

sored, the entry is 1. All entries before this observation are 0. The entries after this observation

are −1 if uncensored, 0 if censored.

Example: For a concrete example of second QP implementation, suppose there are five

ordered observations Z = (1, 2, 3, 4, 5) and censoring indicators δ = (1, 0, 1, 0, 1). The weight

will be w = (w1, 0, w2, 0, w3) and the probability constraint is that
∑
wiδi = w1 + w2 + w3 = 1.

Suppose we want to test a null hypothesis
∑
wiZiδi = w1 + 3w2 + 5w3 = µ. We have the log

likelihood function

L(w,R) = logw1 + logw2 + logw3 + logR1 + logR2 ,
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where R1 = w2 + w3 and R2 = w3. In this case, the relevant vectors and matrixes are:

a =


1/w?1
1/R?1
1/w?2
1/R?2
1/w?3

 , G =



1
(w?1)2

0 0 0 0

0
1

(R?1)2
0 0 0

0 0
1

(w?2)2
0 0

0 0 0
1

(R?2)2
0

0 0 0 0
1

(w?3)2


,

C =


1 1 0 0
0 0 1 0
1 3 −1 0
0 0 0 1
1 5 −1 −1

 , x =


w1 − w?1
R1 −R?1
w2 − w?2
R2 −R?2
w3 − w?3

 ,

where w? and R? is the current value, and w and R will be the updated values after one QP.

The vector b will depend the starting value of w. We always use a starting value w that is

a probability. But if the starting value of w is such that
∑
wiZiδi = Z̄ 6= µ, then the vector b0

below is appropriate. However, after one QP iteration the new w will satisfy
∑
wiZiδi = µ and

thus for subsequent QP the vector b should all be zero.

b0 =
(

0 , µ− Z̄ , 0 , 0
)
, b =

(
0 , 0 , 0 , 0

)
.

The decomposition of the matrix G is H and we have:

H−1 =


w?1 0 0 0 0
0 R?1 0 0 0
0 0 w?2 0 0
0 0 0 R?2 0
0 0 0 0 w?3

 .

Remark 2. To compare the two methods, we generated random sample of size n = 100,

where X from N(1, 1), C from N(1.5, 2). On the same computer, the first method took about

25−30 minutes to compute the likelihood, however, the second method only took 1−2 seconds.

The difference is remarkable.

Remark 3. The same trick also works for other types of censoring. The key is to introduce

some new variables so that the log likelihood function is just
∑

log xi. This, for example, works

for the interval censored data, and xi is the sum of the probabilities located inside the interval

of observation i.
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4 Likelihood Ratio Computation

The SQP method can be applied in many more complicated cases such as doubly censored,

interval censored, and k-sample problems. It is a very convenient and powerful way to find the

maximum of log likelihood function under constraints which in turn allows us to compute the

empirical likelihood ratio statistic:

−2 logR(H0) = −2 log
maxH0 L(w)

maxH0+H1 L(w)
(9)

= 2
[
log( max

H0+H1

L(w))− log(max
H0

L(w))
]

(10)

= 2 [log(L(w̃))− log(L(ŵ))] . (11)

Here w̃ is the NPMLE of probabilities without any constraint, ŵ is the NPMLE of probabilities

under H0 constraint. Both NPMLEs can be computed by SQP. In addition, in many cases, there

are other methods available to compute w̃, the NPMLE without constraint, but not for the ŵ.

After we obtained the w̃ and ŵ, Wilks theorem can then be used to compute the P-value of the

observed statistic. Thus we can use empirical likelihood ratio to test hypothesis and construct

confidence intervals. To illustrate this application, we will show the simulation result for right

censored data and give one example for interval censored data.

5. Simulations and Examples

In this section, right-censored data simulation and interval censored example are given to

illustrate the application of SQP method.

We have implemented this SQP in R software (Gentleman and Ihaka 1996). The R function

el.cen.test to do right censored observations with one mean constraint has been packaged as

part of emplik package and posted on CRAN. It is available inside the package emplik at one

of the CRAN web site (http://cran.us.r-project.org). Others are available from the author.

5.1 Confidence Interval, real data, right censored

Veteran’s Administration Lung cancer study data (for example available from the R package

survival). We took the subset of survival data for treatment 1 and smallcell group. There are

two right censored data. The survival times are:
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30, 384, 4, 54, 13, 123+, 97+, 153, 59, 117, 16, 151, 22, 56, 21, 18, 139, 20, 31, 52, 287, 18,

51, 122, 27, 54, 7, 63, 392, 10.

We use the empirical likelihood ratio to test many null hypothesis that mean is equal to µ

(for various values of µ). The 95% confidence interval for the mean survival time is seen to be

[61.708, 144.915] since the empirical likelihood ratio test statistic -2LogLikRatio= 3.841 both

when µ = 61.708 and µ = 144.915.

The MLE of the mean is 94.7926 which is the integrated Kaplan-Meier estimator. We see

that the confidence interval is not symmetric around the MLE, a nice feature of the confidence

interval based on the likelihood ratio tests.

5.2 Simulation: right censored data

We randomly generated 5000 right-censored samples, each of size n = 300 as in equation (1),

where X is taken from N(1, 1), C from N(1.5, 1). Censoring percentage is around 10%− 20%.

Software R is used in the implementation. We test the null hypothesis H0 :
∑n
i=1wiZiδi = µ = 1,

which is true for our generated data.

We computed 5000 empirical likelihood ratios, using the Kaplan Meier estimator’s jumps as

(w̃) which maximizes the denominator in (9) and we use SQP method to find (ŵ) that maximizes

the numerator under H0 constraint. The Q-Q plot based on 5000 empirical likelihood ratios and

χ2
1 percentiles are shown in Figure 1 At the point 3.84 (or 2.71) which is the critical value of

χ2
1 with nominal level 5% (or 10%), if the −2log-likelihood ratio line is above the dashed line

(45◦ line) the probability of rejecting H0 is greater than 5% (or 10%). Otherwise, the rejecting

probability is less than 5% (or 10%). From the Q-Q plot, we can see that the χ2
1 approximation

is pretty good since the −2log-likelihood ratios are very close to χ2
1 percentiles. Only at the tail

of the plot, the differences between −2log-likelihood ratios and χ2
1 are getting bigger.

5.3 Example – Interval Censored Case

As we mentioned before, SQP method can also be used to compute the (constrained) non-

parametric MLE with interval censored data. We use the breast cosmetic deterioration data from

Gentleman and Geyer (1994) as an example. The data consist of 46 early breast cancer patients

who were treated with radiotherapy, but there are only 8 intervals with positive probabilities.

We use SQP to compute the probabilities for these 8 intervals under constraint
∑8
i=1Xipi = µ,
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Figure 1: Q-Q Plot of −2log-likelihood Ratios vs. χ2
(1) Percentiles for Sample Size = 300

where µ is population mean which we want to test, Xi is the midpoint of each interval, pi is the

probability of corresponding interval. If we let µ =
∑8
i=1Xip0i = 33.5809 (i.e. no constraint),

where p0i is the probability from the above paper, we get the same probability for each interval.

Table 3.1 lists the probabilities for two different constraints.
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