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Abstract

Qin and Lawless (1994) studied the empirical likelihood method with general estimat-
ing equations. They obtained very nice asymptotic properties especially when the number
of estimating equations exceeds the number of parameters (over determined case). We
study here a parallel setup to Qin and Lawless (1994) except uses a hazard-type estimat-
ing equations. The empirical likelihood we used here is also formulated in terms of the
hazard. The advantage of using hazard is that right censored data can be handled easily
through martingale techniques. We obtained similar asymptotic results for the maximum
empirical likelihood estimators and the empirical likelihood ratio tests, including the over
determined case. Three examples are provided to demonstrate the potential applications
of the methodology.

Key Words: Hazard Empirical Likelihood; Estimating Equations; Censored data; Martin-
gale theory; Asymptotic chi-square distribution.

1 Introduction

The first use of the empirical likelihood method was proposed by Thomas and Grunkemeier
(1975) for right censored data and the Kaplan-Meier estimator. It is a nonparametric statistical
inference method similar to the parametric likelihood ratio test. Empirical Likelihood has been
widely studied since a series of papers by Owen starting at (1988) and ultimately summarized
in his book of (2001).

Empirical likelihood method now found numerous applications the construction of confi-
dence regions and hypothesis tests in nonparametric settings or distribution-free contexts.

Other asymptotic properties of empirical likelihood ratio statistics have been investigated
by DiCiccio and Romano (1989), DiCiccio, Hall and Romano (1989) and others.

Qin and Lawless (1994) showed that the empirical likelihood method could be brought to
bear on problems with over-determined estimating equations, where the number of estimating
equations r exceeds the number of parameters p. They demonstrated how the maximum
empirical likelihood estimators of parameters θ ∈ <p may be obtained and determined its
asymptotic multivariate normal distribution. They also proved that the empirical likelihood
ratio test statistic for parameters have asymptotic χ2

(p) distributions so that confidence regions
and hypothesis tests could be constructed. When r = p, their results are the same as those of
Owen (1988, 1990).
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However, Qin and Lawless’s results are limited to uncensored data. For right censored
data, no such results are available. Hence, we propose a parallel construct to that of Qin
and Lawless, except uses a hazard-type empirical likelihood with over-determined hazard-type
estimating equations/constraints. This approach naturally incorporates censoring and counting
process martingales. The resulting empirical likelihood estimator and test statistic also have
very nice asymptotic properties.

Some existing work on censored data empirical likelihood include empirical likelihood for
a single constraint on the surviving probability by Li (1995); empirical likelihood ratio test for
the equality of several medians, Naik-Nimbalkar and Rajarshi (1997); Empirical likelihood for
the weighted hazards by Pan and Zhou (2002), etc. Li, Li and Zhou (2005) provides a review
of empirical likelihood results in survival analysis.

This manuscript is organized as follows. Section 2 describes the background of the research
and some basic theory. The asymptotic properties and results are given in Section 3. In Section
4, we show the efficiency of the maximum empirical likelihood estimator. The application of
our results with three examples are provided in Section 5. Section 6 gives the concluding
remarks. Detailed proofs are not shown in this manuscript due to space limit. But we refer
reader to Hu (2011).

2 Empirical Likelihood, Over-determined Constraints in terms
of Hazard

Suppose that X1, X2, . . . , Xn are i.i.d. nonnegative random variables denoting the lifetimes
with a continuous distribution function F0 and cumulative hazard Λ0. Independent of the
lifetimes there are censoring times C1, C2, . . . , Cn which are i.i.d. with a distribution G0. F0

and G0 are unknown in practice. Only the censored observations, (ti, δi), are available to us:

ti = min(xi, ci) and δi = I[xi ≤ ci] for i = 1, 2, . . . , n.

The empirical likelihood based on the censored observations (ti, δi) in terms of distribution
function F is:

EL(F ) =

n∏
i=1

[∆F (ti)]
δi [1− F (ti)]

1−δi .

We shall re-cast the empirical likelihood in terms of the hazard function. In general, the
cumulative hazard function Λ(t) related to a general CDF F (t) is defined by

Λ(t) =

∫
[0,t)

dF (s)

1− F (s−)
.

We will restrict our analysis (that is, search for the maximum) of the empirical likelihood
to the purely discrete functions dominated by their NPMLE’s. See Owen(1988) for the reason
and discussion on this restriction.

Using the relation between the Λ(t) and F (t), the empirical likelihood above can be written
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in terms of hazard function:

EL(Λ) =
n∏
i=1

[∆Λ(ti)]
δi [
∏

j:tj<ti

(1−∆Λ(tj))]
δi [
∏

j:tj≤ti

(1−∆Λ(tj))]
1−δi

where ∆Λ(t) = Λ(t+) − Λ(t−) is the jump of Λ at t. The reason we use EL(Λ) instead of
EL(F ) will be discussed in Section 6.

In this manuscript, we will use a simpler version of the EL(Λ), which is called a Poisson
extension of the likelihood by Murphy (1995) and was also used by Pan and Zhou (2002):

AL(Λ) =

n∏
i=1

[∆Λ(ti))]
δi exp{−Λ(ti)} (1)

=

n∏
i=1

[∆Λ(ti))]
δi exp{−

∑
j:tj≤ti

∆Λ(tj)}

Notice we have assumed a discrete Λ(t) in the above.
The difference between AL(Λ) and EL(Λ) is small and negligible for large n. See Pan and

Zhou (2002) for the comparison.
Let wi = ∆Λ(ti) for i = 1, 2, . . . , n, where we notice wn = δn because the last jump of a

discrete cumulative hazard function must be one. The likelihood at this Λ can be written in
term of the jumps

AL =
n∏
i=1

[wi]
δi exp{−

n∑
j=1

wjI[tj ≤ ti]} ,

and the log likelihood is

logAL =
n∑
i=1

δi logwi −
n∑
j=1

wjI[tj ≤ ti]

 (2)

=
n∑
i=1

δi logwi −
n∑
i=1

wiRi , (3)

where Ri =
∑

j I[tj ≥ ti].
If we maximize the log AL above over all possible (discrete) hazard functions, it is well

known that this yields wi = δi
Ri

. This is the well known Nelson-Aalen estimator: ∆Λ̂NA(ti) =
δi
Ri

.
Next, we want to maximize the log AL subject to some estimating equations. For this pur-

pose we need first discuss the estimating equations in terms of hazard. Denote the parameter
vector θ = (θ1, . . . , θp)

>. We assume the true value of the parameter θ0 satisfy some finite
functionals of the hazard function: θ = T (Λ). In particular we assume θ is defined by the
equations {∫

g1(t,θ)dΛ(t), · · · ,
∫
gr(t,θ)dΛ(t)

}>
= (k1, · · · , kr)> (4)
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where gi(t, ·) are given functions satisfy some moment conditions. Notice here the number of
equations, r, can be larger than p. Denote (k1, · · · , kr)> = k.

Example 1: The parameter θ of median can be defined as
∫
I[t≤θ]dΛ(t) = log 2.

Example 2: The paper of Naik-Nimbalkar and Rajarshi (1997) discuss the testing of the
equality of the median of k samples. If we assume there is a common median, then how
to estimate the common, unknown median become a question of over-determined estimating
equation problem, since the median can be estimated from any of the k samples. In fact Naik-
Nimbalkar and Rajarshi actually gave the definition of the maximum empirical likelihood
estimator θ̂ of the common median (see their p. 269) and have noticed it actually is an optimal
linear combination of the k individual median estimators.

For more examples please see the section 5 later.

The discrete version of the above estimating equations (4) is then:

n−1∑
i=1

δig(ti,θ)wi + g(tn,θ)δn = k . (5)

These equations can be used in two different ways. First, if r = p then we may let
wi = δi/Ri = ∆Λ̂NA(ti) and solve the equations in term of θ. The solution is the estimator
(in fact NPMLE).

Second, when r > p these equations do not in general have a solution in terms of θ. But
we can fix the θ (at the null value for example) and solve these equations in term of wi. These
wi will give rise to an empirical likelihood value and provide us a way to test the hypothesis
of the null value of the θ.

The following Theorem 1 is just the solution of (5), in terms of wi for fixed θ.
The first step in our empirical likelihood analysis is to find a (discrete) cumulative hazard

function wi that maximizes the logAL under the constraints (5), notice here wi in general do
not equal to the Nelson-Aalen jump.

Theorem 1 If the constraints (5) are feasible (which means there is at least a genuine hazard
wi that solve (5) ), then the maximum of AL under the constraints is obtained when

wi(λ(θ),θ) =
δi

Ri + nλ(θ)>g(ti,θ)δi
(6)

=
δi
Ri
× 1

1 + λ(θ)>(δig(ti,θ)/(Ri/n))

= ∆Λ̂NA(ti)
1

1 + λ(θ)>Z(ti,θ)
,

where

Z(ti,θ) =
δig(ti,θ)

Ri/n
= (Z1(ti,θ), . . . , Zr(ti,θ))> for i = 1, 2, . . . , n− 1. (7)
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and λ = (λ1, . . . , λr)
> are the solutions of the following r equations

h(λ(θ),θ) =
n−1∑
i=1

δig(ti,θ)wi(λ(θ),θ) + δng(tn,θ)− k

=
n−1∑
i=1

δig(ti,θ)

Ri
× 1

1 + λ(θ)>Z(ti,θ)
+ δng(tn,θ)− k (8)

=
1

n

n−1∑
i=1

Z(ti,θ)

1 + λ(θ)>Z(ti,θ)
+ δng(tn,θ)− k

= 0. (9)

Proof. Use standard Lagrange multiplier calculation. Similar to Pan and Zhou (2002).

3 Theory and Asymptotic Results

Consider the hypothesis:

H0 : θ = θ0; vs. H1 : θ 6= θ0.

The true value of the parameter θ0 are assumed to satisfy{∫
g1(t,θ0)dΛ0(t), · · · ,

∫
gr(t,θ0)dΛ0(t)

}>
= (k1, · · · , kr)> .

We propose an empirical likelihood ratio statistic as follows:

T = −2

{
max

θ=θ0,wi

logAL− max
θ∈Rp,wi

logAL

}
. (10)

The first maximum in the test statistic T above can be obtained through Theorem 1, with
θ = θ0 and the wi given there. The second maximization of above statistic T is taken over all
possible θ and wi.

In the case r = p, assume the below equations have a unique solution θ̂ (r equations and
r unknowns) {∫

g1(t,θ)dΛ̂NA(t), · · · ,
∫
gr(t,θ)dΛ̂NA(t)

}>
= (k1, · · · , kr)> ,

then the maximum is achieved when we just use wi = ∆Λ̂NA(ti) for the second logAL.
In the case r > p, we have to search over θ for the max. But once the θ is fixed, the wi can

once again be obtained by Theorem 1. So, it is a search over the θ. This empirical likelihood
ratio test statistic has an approximate chi-square distribution with p degrees of freedom under
the null hypothesis. We reject H0 for larger values of T . Confidence regions for θ can be
obtained by inverting the chi-square test.
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Definition: The θ value that achieve the maximum in the second term of the test
statistic T in (10) will be our maximum empirical likelihood estimator, θ̂.

In this section, we will first use Weak Law of Large Number (Lemma 1) and Martingale
Central Limit Theorem (Lemma 2) to get some asymptotic properties for Z defined in (7).
Lemma 3 gives the asymptotic properties of λ. Finally the main results are formulated in
Theorem 2 and 3. When we take limit of a matrix, we are taking limit of each element of the
matrix.

Lemma 1 Let (T1, δ1), . . . , (Tn, δn) be n pairs of random variables as defined above. Suppose
gi(x,θ) i = 1, . . . , r are left continuous functions and

0 <

∫ |gi(x,θ)||gj(x,θ)|
(1− F0(x))(1−G0(x−))

dΛ0(x) <∞, ∀i, j 1 ≤ i, j ≤ r.

Then,we have, for Z defined in (7),

1

n

n∑
i=1

Zu(ti,θ)Zv(ti,θ) =

∫
gu(t,θ)gv(t,θ)

R(t)/n
dΛ̂NA(t)

P−→
∫

gu(x,θ)gv(x,θ)

(1− F0(x))(1−G0(x−))
dΛ0(x)

where
R(t) =

∑
I[Ti≥t].

Lemma 2 In addition to the assumptions of Lemma 1, we assume the matrix ΣZ is positive
definite. For Z defined in (7), we have, under null hypoyhesis

√
n

(
1

n

n∑
i=1

Z(ti,θ0)− k

)
=
√
n

(
n∑
i=1

g(ti,θ0)∆Λ̂NA(ti)− k

)
D−→ N(0,ΣZ)

as n→∞ where

k =

{∫
g1(t,θ0)dΛ0(t), . . . ,

∫
gr(t,θ0)dΛ0(t)

}>
,

ΣZuv =

∫
gu(x,θ0)gv(x,θ0)

(1− F0(x))(1−G0(x−))
dΛ0(x) ∀u, v 1 ≤ u, v ≤ r.

Lemma 3 Under mild regularity conditions (smoothness conditions that allow Taylor expan-
sion), the solution λ of the constraint equations in (9) under the null hypothesis has the fol-
lowing asymptotic representations:

(i) Let θ0 to be the true value of the parameters, and assume

h′(0,θ0) =
∂h(λ,θ0)

∂λ
|λ=0

is an invertible r × r matrix, then we have

√
nλ(θ0)

D−→ N(0,Σλ); as n→∞
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where Σλ = Σ−1Z = limn→∞[h′(0,θ0)]
−1.

(ii) In addition, assume that g(·) are smooth and |θ − θ0| = O(1/
√
n), we have

λ(θ) = λ(θ0)− {h′(0,θ0)}−1A(θ − θ0) + op(1/
√
n)

where A is an r × p matrix defined as

A =
∂h(λ,θ)

∂θ
|λ=0,θ=θ0=

1

n

n∑
i=1

∂Z(ti,θ0)

∂θ

Proof. Use Taylor expansion on h with respect to λ.
Remark. The r × r matrix

h′(0,θ0) =
∂h(λ,θ0)

∂λ
|λ=0= − 1

n

n−1∑
i=1

Z(ti,θ0)Z
>(ti,θ0)

is easy to verify to be symmetric and at least non-positive definite. Proper choice of the g
function will guarantee it to be negative definite.

Theorem 2 Under the null hypothesis, plus same regularity assumptions as in Lemma 3, the
test statistic T has asymptotically a chi-square distribution with p degrees of freedom:

T
D−→ χ2

(p) , as n→∞.

Theorem 3 Let θ̂ be the over determined case maximum empirical likelihood estimator as
defined earlier. Assume that the true parameter θ0 and the true hazard function Λ0(t) satisfy
the equations (4), then the asymptotic distribution of θ̂ is given by

√
n(θ̂ − θ0)

D−→ N(0,Σθ) ,

where
Σθ = − lim

n→∞
{A>[h′(0,θ0)]

−1A}−1.

4 Efficiency

We now take a closer look at the asymptotic variance of the maximum empirical likelihood
estimator obtained in Theorem 3 above. By noticing that the structure of Σθ is the same as
the variance-covariance matrix in Qin and Lawless’s paper, we can get the same corollary as
follows.

Corollary 1 When r > p, the asymptotic variance Σθ of
√
n(θ̂ − θ0) cannot decrease if a

constraint equation is dropped.
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This shows that the maximum empirical likelihood estimator obtained in Theorem 3 is
asymptotically efficient. The variance-covariance matrix will not decrease when we include
fewer constraint equations. In other words, it is recommended that we should always use as
much information as possible.

5 Examples

5.1 Example 1.

For i = 1, . . . , n, let Ti be the failure time for the ith subject and let Xi be the associated
p-vector of covariates. The accelerated failure time model specifies that

log Ti = β>0Xi + εi, i = 1, . . . , n.

where β0 is a p-vector of unknown regression parameters and εi (i = 1, . . . , n) are independent
error terms with a common, but completely unspecified, distribution.

Let Ci be the censoring time for Ti. T̃i = min(Ti, Ci), δi = I{Ti≤Ci}. Define ei(β) =

log T̃i − β>Xi. The weighted log-rank estimating function for parameter β0 takes the form

Uφ(β) =
n∑
i=1

δiφ{β; ei(β)}[Xi − X̄{β; ei(β)}],

where φ is a weight function, possibly data-dependent, and

X̄{β; ei(β)} =

∑
j XjI[ej ≥ ei]∑
j I[ej ≥ ei]

.

Two popular choices for the weight function φ are ‘Gehan’ weight and the ‘Logrank’ weight
(φ = const.).

Let β̂φ be a root of the estimating function Uφ(β). We get different roots when we use
different φ function.

Jin et al (2003) proposed new estimators for the regression parameters β by taking different
forms of φ in the semiparametric accelerated failure time model with censored observations.
They compared Gehan estimator and Log-rank estimator in the simulation studies and demon-
strate their respective advantages in different scenarios. However, using our over determined
estimating equation approach, we do not have to choose between them, we can use both of
them and theoretically obtain a better estimator.

Using the estimating function above and re-writing it as estimating equations with ei(β) =
si and with hazard summation:

0 =
n∑
i=1

δiR(si)φ{β; si}[Xi − X̄{β; si}]wi . (11)

These equations needs to be coupled with the log empirical likelihood function (3).
One feature of the above equation is that if (1) r = p, and (2) wi = ∆Λ̂NA(si) then the

solution of the equations coincide with the usual rank estimator described in Jin et. al. (2003).
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Some R code of computation:
This example is for the AFT model rank estimator. We illustrate the use of empirical

likelihood (Poisson version) with the hazard estimating equations.
If every R functions are defined, you may test the hypothesis for β as in

library(emplik)

RankRegTestH(y=log(myeloma[,1]), d=myeloma[,2], x=myeloma[,3],

beta= -2.46646 , type="Gehan")

Another option of the type is ‘Logrank’. The relevant functions are defined as

RankRegTestH <- function(y, d, x, beta, type="Gehan") {

n <- length(y) ## dimension of x must be n x q.

x <- as.matrix(x) ## x must NOT including an intercept.

xdim <- dim(x)

if( xdim[1] != n ) stop("check dim of x")

if( length(beta) != xdim[2] ) stop("check dim of beta and x")

e <- y - as.vector( x %*% beta )

ordere <- order(e, -d)

esort <- e[ordere]

dsort <- d[ordere]

xsort <- as.matrix(x[ordere,])

dsort[length(dsort)] <- 1 #last one as uncensored always?

##xbar <- rev(cumsum(rev(xsort)))/(n:1)

xbar <- xsort

####for(j in 1:(n-1)) xbar[j,] <- colMeans(xsort[j:n,])

for(j in 1:xdim[2]) xbar[,j] <- rev(cumsum(rev(xsort[,j])))/(n:1)

if(type == "Gehan") {A <- (n:1)^2 * (xsort - xbar)}

else {if(type == "Logrank") A <- (n:1) * (xsort - xbar)

else stop("type must be either Gehan or Logrank") }

## A1 <- (n:1)^2 * (xsort -xbar)

## A2 <- (n:1) * (xsort - xbar)

## A <- cbind(A1, A2)

AA <- as.matrix(A[dsort == 1,])

myfun <- function(t, A){ return(A) }

myfun2 <- function(t){ matrix(0, ncol=ncol(AA), nrow=length(t)) }

x20 <- runif(30)

d20 <- rep(1, 30)
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temp2 <- emplikHs.test22(x1=esort, d1=dsort, x2=x20, d2=d20,

theta=rep(0,ncol(AA)), fun1=myfun, fun2=myfun2, A=AA)

Samp1EL <- temp2$"-2LLR(sample1)"

list(loglikH0=temp2$"Llik(sample1)", "-2LLR"=Samp1EL)

}

The following function is basically the same as the one in the package emplik, only the
functions fun1 can take extra inputs as in .... We need that for the way we define the rank
estimator estimating equations.

emplikHs.test22 <- function (x1, d1, y1 = -Inf, x2, d2, y2 = -Inf,

theta, fun1, fun2, maxit = 25, tola = 1e-07, itertrace = FALSE, ...)

{

theta <- as.vector(theta)

q <- length(theta)

x1 <- as.vector(x1)

n1 <- length(x1)

if (n1 <= 2 * q + 1)

stop("Need more observations in x1")

if (length(d1) != n1)

stop("length of x1 and d1 must agree")

if (any((d1 != 0) & (d1 != 1)))

stop("d1 must be 0/1’s for censor/not-censor")

if (!is.numeric(x1))

stop("x1 must be numeric -- observed times")

x2 <- as.vector(x2)

n2 <- length(x2)

if (n2 <= 2 * q + 1)

stop("Need more observations for sample 2")

if (length(d2) != n2)

stop("length of x2 and d2 must agree")

if (any((d2 != 0) & (d2 != 1)))

stop("d2 must be 0/1’s for censor/not-censor")

if (!is.numeric(x2))

stop("x2 must be numeric -- observed times")

newdata1 <- Wdataclean2(z = x1, d = d1)

temp1 <- DnR(newdata1$value, newdata1$dd, newdata1$weight,

y = y1)

newdata2 <- Wdataclean2(z = x2, d = d2)

temp2 <- DnR(newdata2$value, newdata2$dd, newdata2$weight,

y = y2)

jump1 <- (temp1$n.event)/temp1$n.risk

jump2 <- (temp2$n.event)/temp2$n.risk
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index1 <- (jump1 < 1)

index2 <- (jump2 < 1)

funtime11 <- as.matrix(fun1(temp1$times, ...))

if (ncol(funtime11) != q)

stop("check the output dim of fun1, and theta")

funtime21 <- as.matrix(fun2(temp2$times))

if (ncol(funtime21) != q)

stop("check the output dim of fun2, and theta")

Kcent <- jump1 %*% funtime11 - jump2 %*% funtime21

if (itertrace)

print(c("Kcenter=", Kcent))

K12 <- rep(0, q)

tm11 <- temp1$times[!index1]

if (length(tm11) > 1)

stop("more than 1 place jump>=1 in x1?")

if (length(tm11) > 0) {

## This seems to calculate f(last point).

K12 <- K12 ## + as.vector(fun1(tm11, ...))

## Since at the last point, the

## score x - bar x is always 0, we just assign 0.

}

tm21 <- temp2$times[!index2]

if (length(tm21) > 1)

stop("more than 1 place jump>=1 in x2?")

if (length(tm21) > 0) {

K12 <- K12 - as.vector(fun2(tm21))

}

eve1 <- temp1$n.event[index1]

tm1 <- temp1$times[index1]

rsk1 <- temp1$n.risk[index1]

jmp1 <- jump1[index1]

funtime1 <- as.matrix(fun1(tm1, ...))

if(length(tm11) > 0) {funtime1 <- as.matrix(funtime1[-nrow(funtime1),])}

eve2 <- temp2$n.event[index2]

tm2 <- temp2$times[index2]

rsk2 <- temp2$n.risk[index2]

jmp2 <- jump2[index2]

funtime2 <- as.matrix(fun2(tm2))
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TINY <- sqrt(.Machine$double.xmin)

if (tola < TINY)

tola <- TINY

lam <- rep(0, q)

N <- n1 + n2

nwts <- c(3^-c(0:3), rep(0, 12))

gwts <- 2^(-c(0:(length(nwts) - 1)))

gwts <- (gwts^2 - nwts^2)^0.5

gwts[12:16] <- gwts[12:16] * 10^-c(1:5)

nits <- 0

gsize <- tola + 1

while (nits < maxit && gsize > tola) {

grad <- gradf3(lam, funtime1, eve1, rsk1, funtime2, eve2,

rsk2, K = theta - K12, n = N)

gsize <- mean(abs(grad))

arg1 <- as.vector(rsk1 + funtime1 %*% lam)

arg2 <- as.vector(rsk2 - funtime2 %*% lam)

ww1 <- as.vector(-llogpp(arg1, 1/N))^0.5

ww2 <- as.vector(-llogpp(arg2, 1/N))^0.5

tt1 <- sqrt(eve1) * ww1

tt2 <- sqrt(eve2) * ww2

HESS <- -(t(funtime1 * tt1) %*% (funtime1 * tt1) + t(funtime2 *

tt2) %*% (funtime2 * tt2))

nstep <- as.vector(-solve(HESS, grad))

gstep <- grad

if (sum(nstep^2) < sum(gstep^2))

gstep <- gstep * (sum(nstep^2)^0.5/sum(gstep^2)^0.5)

ninner <- 0

for (i in 1:length(nwts)) {

lamtemp <- lam + nwts[i] * nstep + gwts[i] * gstep

ngrad <- gradf3(lamtemp, funtime1, eve1, rsk1, funtime2,

eve2, rsk2, K = theta - K12, n = N)

ngsize <- mean(abs(ngrad))

if (ngsize < gsize) {

lam <- lamtemp

ninner <- i

break

}

}

nits <- nits + 1

if (ninner == 0)

nits <- maxit
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if (itertrace)

print(c(lam, gsize, ninner))

}

lamfun1 <- as.vector(funtime1 %*% lam)

lamfun2 <- as.vector(funtime2 %*% lam)

onePlamh1 <- (rsk1 + lamfun1)/rsk1

oneMlamh2 <- (rsk2 - lamfun2)/rsk2

loglik1 <- (sum(eve1 * llog(onePlamh1, 1/N)) - sum(eve1 *

(lamfun1)/(rsk1 + lamfun1)))

loglik1fenzi <- -sum(eve1 * llog((rsk1 + lamfun1), 1/N)) -

sum(eve1/onePlamh1)

loglik2 <- (sum(eve2 * llog(oneMlamh2, 1/N)) - sum(eve2 *

(-lamfun2)/(rsk2 - lamfun2)))

loglik <- 2 * (loglik1 + loglik2)

list(‘-2LLR‘ = loglik, lambda = lam, ‘-2LLR(sample1)‘ = 2 *

loglik1, ‘Llik(sample1)‘ = loglik1fenzi)

}

5.2 Example 2.

This is the same example as the one in Kim (2003) dissertation.
An AML study by Embury et al. at Stanford University reports the results of a clinical trial

to evaluate the efficacy of maintenance chemotherapy for acute myelogenous leukemia (AML).
After reaching a status of remission through treatment by chemotherapy, the patients who
enter the study are assigned randomly to two groups. The first, or treatment, group receives
maintenance chemotherapy; the second, or control, group does not. Interest is on analyzing
data if maintenance chemotherapy does either delay or prolong the time until relapse. The
efficacy of maintenance chemotherapy for AML is evaluated on two aspects, a shift of the time
to relapse and a proportional hazards change in the distribution of time to death.

Based on the Kaplan-Meier survival curves drawn from the data, we are convinced that a
hybrid model with the shift parameter and the proportional hazard rate is appropriate to fit
the data:

1−G(t) = [1− F (t− θ)]η, for any t ∈ <1.

where G(t) and F (t) are the two unknown distributions for survival times from two different
groups.

This is a special case of our research. We only have two parameters θ and η, but r > 2
constraints since we assume the data fit the hybrid model.∑

j

δyjgk(yj) log(1− vj) =
∑
i

δxiηgk(xi − θ) log(1− wi), k = 1, . . . , r.

where gk, k = 1, . . . , r are given functions satisfying some conditions, (yj , δyj) and (xi, δxi)are
censored observations from two samples, and vj and wi are hazard jumps from the correspond-
ing two samples.

We hope to get the same or similar value as Kim did, but the programme is still in progress.
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5.3 Example 3

Data generated from
X1, . . . , Xn ∼ Exponential (λ1 = 0.02). C1, . . . , Cn ∼ Exponential (λ2 = 0.005)
Ti = min(Xi, Ci) and δi = I[Xi ≤ Ci].
We want to estimate a single parameter θ. with two estimating equations:∫

I[0 ≤ x ≤ 20]dΛ0(x) = 20λ1 = θ (12)∫
I[20 ≤ x ≤ 40]dΛ0(x) = θ (13)

The true value of θ is 0.4.
Code for Simulation 1, q-q plot. (which show the over determined empirical likelihood ratio

has chi square distribution under null hypothesis)

estfun <- function(x){

cbind(as.numeric(x<=20),as.numeric(20<=x&x<=40)) }

llikratio <- rep(NA,1000)

dloglik <- rep(NA,1000)

nuloglik <- rep(NA,1000)

for (j in 1:1000){

t <- rexp(50,0.02)

d <- rexp(50,0.005)

x <- pmin(t,d)

cen <- as.numeric(t <= d)

newtemp <- newdataclean(x=x,d=cen, fun=estfun)

nuloglik[j] <- newloglik(newtemp$funt, newtemp$eve, newtemp$rsk,

newtemp$n, maxit=25, newtemp$K12,0.4)$"nloglik"

testthetas<-matrix(NA, ncol=101, nrow=1000)

testloglik<-matrix(NA,ncol=101, nrow=1000)

for (i in 1:101){

testthetas[j,i] <- newtemp$ltheta+(i-1)/100*(newtemp$rtheta-newtemp$ltheta)

testloglik[j,i] <- newloglik(newtemp$funt, newtemp$eve, newtemp$rsk,

newtemp$n, maxit=25, newtemp$K12, testthetas[j,i])$"nloglik" }

dloglik[j] <- max(-testloglik[j,])

llikratio[j] <- 2*(dloglik[j]+nuloglik[j]) }

plot(qchisq(1:1000/1001,1), sort(llikratio), xlab="chisq(1)

quantiles", ylab= "-2 log likelihood ratio")

abline(a=0,b=1)

Next plot shows three log likelihood ratio value vs. θ curves. They are obtained using just
estimating equation 1, just estimating equation 2, or both estimating equations. The location
of the three minimums are the three MEL estimators. The curvature at the minimum reflect
the variance of the estimators. We see that the over determined curve (the one with small
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bubbles) has minimum location very close to other two, and is sandwiched in between. The
over determined curve also has the largest curvature. In other words, the over determined line
has the largest second derivative at the minimum. We recall the second derivative is related to
the information number. The horizontal line is drawn at 3.84, the 95 percentile of chi square
df=1. Each curve meet the 3.84 line at two places, they are the lower and upper limit of
the 95% confidence interval. We clearly see that the confidence interval based on the over
determined curve are the shortest confidence interval.

R code for simulation 2

t <- rexp(100, 0.02)

d <- rexp(100, 0.005)

x <- pmin(t,d)

cen <- as.numeric(t <= d)

thetas1 <- 0.2+(0:99)*0.5/100

result1 <- rep(NA,100)

result2 <- rep(NA,100)

est1 <- function(x){as.numeric(x<=20)}

est2 <- function(x){as.numeric(20<=x & x<=40)}

for (i in 1:100){
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result1[i]<-emplikH1.test(x=x,d=cen,theta=thetas1[i],fun=est1)$"-2LLR"

result2[i]<-emplikH1.test(x=x,d=cen,theta=thetas1[i],fun=est2)$"-2LLR"

}

result <- rep(NA,100)

thetas2 <- thetas1

nuloglik <- rep(NA,100)

dloglik <- rep(NA,100)

testthetas <- matrix(NA,ncol=101,nrow=100)

testloglik <- matrix(NA,ncol=101,nrow=100)

newtemp <- newdataclean(x=x,d=cen, fun=estfun)

for (i in 1:100){

nuloglik[i]<- newloglik(newtemp$funt,newtemp$eve, newtemp$rsk,

newtemp$n, maxit = 25, newtemp$K12,thetas2[i])$"nloglik"

for (j in 1:101){

testthetas[i,j]<-newtemp$ltheta+(j-1)/100*(newtemp$rtheta-newtemp$ltheta)

testloglik[i,j]<- newloglik(newtemp$funt, newtemp$eve, newtemp$rsk,

newtemp$n, maxit = 25, newtemp$K12, testthetas[i,j])$"nloglik"

}

dloglik[i]<- max(-testloglik[i,])

result[i]<- 2*(dloglik[i]+nuloglik[i])

}

plot(thetas1,result1,ylim=c(0,20),xlab="theta",

ylab="-2loglikelihood ratio",main="Constraint (1)")

par(new=TRUE)

plot(thetas1,result2,ylim=c(0,20),xlab="theta",

ylab="-2loglikelihood ratio",main="Constraint (2)")

par(new=TRUE)

plot(thetas2,result,ylim=c(0,20),xlab="theta",

ylab="-2loglikelihood ratio", main="Constraints (1)&(2) ")

The above function needs the following to run. These are functions similar to those in
the package emplik, but are modified to specifically work for the over determined hazard
estimating equations.
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newdataclean <- function(x, d, y = -Inf, fun, itertrace = FALSE) {

x <- as.vector(x)

n <- length(x)

if (n <= 2) stop("Need more observations in x")

if (length(d) != n) stop("length of x and d must agree")

if ( any( (d != 0) & (d != 1) ) ) stop("d must be 1 or 0, for death/censor")

if (!is.numeric(x)) stop("x must be numeric, the observed times")

newdata <- Wdataclean2(z=x, d=d)

temp <- DnR(newdata$value, newdata$dd, newdata$weight,y = y)

jump <- (temp$n.event)/temp$n.risk

funtime <- as.matrix(fun(temp$times))

if (ncol(funtime) !=2)

stop("check the output dim of fun")

esttheta <- t(jump) %*% funtime

if (itertrace) print(c("thetahat=", esttheta))

ltheta <-min(esttheta[1], esttheta[2])

rtheta <-max(esttheta[1], esttheta[2])

index <- (jump < 1)

K12 <-rep(0,2)

tm1 <- temp$times[!index]

if (length(tm1) > 1) stop("more than 1 places jump>=1 in x?")

if (length(tm1) > 0) {

K12 <- K12 + as.vector(fun (tm1))}

eve <-temp$n.event[index]

tm <- temp$times[index]

rsk<- temp$n.risk[index]

jmp <- jump [index]

funt <- as.matrix(fun (tm))

list(funt=funt, eve=eve, rsk=rsk, ltheta=ltheta, rtheta=rtheta,

K12=K12,n=n, jump=jump, tm=tm)

}

newgradf <- function(lam, funt, eve, rsk, K, n) {

arg <- as.vector(rsk + funt%*% lam)

VV <- (eve * llogp(arg, 1/n)) %*% funt - K

return(as.vector(VV))

}

newloglik <- function(funt, eve, rsk, n, maxit = 25, K12, theta,

tola=1e-07, itertrace=FALSE){

TINY <- sqrt(.Machine$double.xmin)

if (tola < TINY)

tola <- TINY

lam <- rep(0,2)
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#Newton-Raphson process.

nwts <- c(3^-c(0:3), rep(0, 12))

gwts <- 2^(-c(0:(length(nwts) - 1)))

gwts <- (gwts^2 - nwts^2)^0.5

gwts[12:16] <- gwts[12:16] * 10^-c(1:5)

nits <- 0

gsize <- tola + 1

while (nits < maxit && gsize > tola) {

grad <- newgradf(lam, funt, eve, rsk, K = theta - K12, n = n)

gsize <- mean(abs(grad))

arg <- as.vector(rsk + funt %*% lam)

ww <- as.vector(-llogpp(arg, 1/n))^0.5

tt <- sqrt(eve) * ww

HESS <- - (t(funt * tt) %*% (funt * tt) )

nstep <- as.vector(-solve(HESS, grad))

gstep <- grad

if (sum(nstep^2) < sum(gstep^2))

gstep <- gstep * (sum(nstep^2)^0.5/sum(gstep^2)^0.5)

ninner <- 0

for (i in 1:length(nwts)) {

lamtemp <- lam + nwts[i] * nstep + gwts[i] * gstep

ngrad <- newgradf(lamtemp, funt, eve, rsk, K = theta - K12, n = n)

ngsize <- mean(abs(ngrad))

if (ngsize < gsize) {

lam <- lamtemp

ninner <- i

break

}

}

nits <- nits + 1

if (ninner == 0)

nits <- maxit

if (itertrace) print(c(lam, gsize, ninner))

}

#Calculate the log-likelihood.

lamfun <- as.vector(funt%*%lam)

onePlamf <- (rsk+lamfun)/rsk

nloglik <- sum(eve*llog(onePlamf*rsk,1/n))+sum(eve*llogp(onePlamf, 1/n))

list(nloglik=nloglik, lambda=lam) }
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6 Concluding Remarks

We have shown that the proposed empirical likelihood ratio test statistic with the con-
straints (5) in terms of hazards has an approximate chi-square distribution with p degrees of
freedom under the null hypothesis. Confidence regions for θ can be obtained by inverting the
chi-square test.

This is a complement work to that of Qin and Lawless for handling censored data. However,
computational issues arise as to the best ways to obtain T and θ̂, especially in multi-dimensional
parameter case. Further research on the calculation problem is still needed.

The reason we choose to use hazard-type empirical likelihood and constraints (or estimating
functions) is that with right censored data we can easily get an estimate of the hazard function
through Theorem 1.

Usually the estimating functions are given in terms of the CDF, like those studied by Qin
and Lawless. Because most estimating equations are derived from the expectations, thus the
integral with respect to CDF.

However, often the estimating equations in terms of the CDF can be approximated with
estimating equations in terms of hazard, by choosing a proper g∗(·) function. It then is clear
that the original (CDF estimating equations) problem can be transformed into an equivalent
problem in hazard, and then treated using the results of this paper. It will be discussed in a
forthcoming paper.
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