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Chapter 1

Discrete Distributions

1.1 DISCRETE DISTRIBUTION1

1.1.1 DISCRETE DISTRIBUTION

1.1.1.1 RANDOM VARIABLE OF DISCRETE TYPE

A SAMPLE SPACE S may be di�cult to describe if the elements of S are not numbers. Let discuss
how one can use a rule by which each simple outcome of a random experiment, an element s of S, may be
associated with a real number x.

De�nition 1: DEFINITION OF RANDOM VARIABLE
1. Given a random experiment with a sample space S, a function X that assigns to each element s
in S one and only one real number X (s) = x is called a random variable. The space of X is the
set of real numbers {x : x = X (s) , s ∈ S}, where s belongs to S means the element s belongs to
the set S.
2. It may be that the set S has elements that are themselves real numbers. In such an instance we
could write X (s) = s so that X is the identity function and the space of X is also S. This is
illustrated in the example below.

Example 1.1
Let the random experiment be the cast of a die, observing the number of spots on the side facing
up. The sample space associated with this experiment is S = (1, 2, 3, 4, 5, 6) . For each s belongs
to S, let X (s) = s . The space of the random variable X is then {1,2,3,4,5,6}.

If we associate a probability of 1/6 with each outcome, then, for example, P (X = 5) =
1/6, P (2 ≤ X ≤ 5) = 4/6, and s belongs to S seem to be reasonable assignments, where (2 ≤ X ≤ 5)
means (X = 2,3,4 or 5) and (X ≤ 2) means (X = 1 or 2), in this example.

We can recognize two major di�culties:

1. In many practical situations the probabilities assigned to the event are unknown.
2. Since there are many ways of de�ning a function X on S, which function do we want to use?

Let X denotes a random variable with one-dimensional space R, a subset of the real numbers. Suppose that
the space R contains a countable number of points; that is, R contains either a �nite number of points or
the points of R can be put into a one-to- one correspondence with the positive integers. Such set R is called
a set of discrete points or simply a discrete sample space.

Furthermore, the random variable X is called a random variable of the discrete type, and X is
said to have a distribution of the discrete type. For a random variable X of the discrete type, the

1This content is available online at <http://cnx.org/content/m13114/1.5/>.
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2 CHAPTER 1. DISCRETE DISTRIBUTIONS

probability P (X = x) is frequently denoted by f(x), and is called the probability density function and
it is abbreviated p.d.f..

Let f(x) be the p.d.f. of the random variable X of the discrete type, and let R be the space of X.
Since, f (x) = P (X = x) , x belongs to R, f(x) must be positive for x belongs to R and we want all these
probabilities to add to 1 because each P (X = x) represents the fraction of times x can be expected to occur.
Moreover, to determine the probability associated with the event A ⊂ R , one would sum the probabilities
of the x values in A.

That is, we want f(x) to satisfy the properties

• P (X = x) ,
•
∑
x∈R f (x) = 1;

• P (X ∈ A) =
∑
x∈A f (x) , where A ⊂ R.

Usually let f (x) = 0 when x /∈ R and thus the domain of f(x) is the set of real numbers. When we de�ne
the p.d.f. of f(x) and do not say zero elsewhere, then we tacitly mean that f(x) has been de�ned at all x's
in space R, and it is assumed that f (x) = 0 elsewhere, namely, f (x) = 0 , x /∈ R. Since the probability
P (X = x) = f (x) > 0 when x ∈ R and since R contains all the probabilities associated with X, R is
sometimes referred to as the support of X as well as the space of X.

Example 1.2
Roll a four-sided die twice and let X equal the larger of the two outcomes if there are dif-
ferent and the common value if they are the same. The sample space for this experiment is
S = [(d1, d2) : d1 = 1, 2, 3, 4; d2 = 1, 2, 3, 4] , where each of this 16 points has probability 1/16.
Then P (X = 1) = P [(1, 1)] = 1/16 , P (X = 2) = P [(1, 2) , (2, 1) , (2, 2)] = 3/16 , and similarly
P (X = 3) = 5/16 and P (X = 4) = 7/16 . That is, the p. d.f. of X can be written simply as
f (x) = P (X = x) = 2x−1

16 , x = 1, 2, 3, 4.
We could add that f (x) = 0 elsewhere; but if we do not, one should take f(x) to equal zero

when x /∈ R.
A better understanding of a particular probability distribution can often be obtained with a graph that
depicts the p.d.f. of X.

Note that: the graph of the p.d.f. when f (x) > 0 , would be simply the set of points {[x, f (x)] :
x ∈ R }, where R is the space of X.

Two types of graphs can be used to give a better visual appreciation of the p.d.f., namely, a bar graph
and a probability histogram. A bar graph of the p.d.f. f(x) of the random variable X is a graph having
a vertical line segment drawn from (x, 0) to [x, f (x)] at each x in R, the space of X. If X can only assume
integer values, a probability histogram of the p.d.f. f(x) is a graphical representation that has a rectangle
of height f(x) and a base of length 1, centered at x, for each x ∈ R, the space of X.

De�nition 2: CUMULATIVE DISTRIBUTION FUNCTION
1. Let X be a random variable of the discrete type with space R and p.d.f. f (x) = P (X = x) ,
x ∈ R. Now take x to be a real number and consider the set A of all points in R that are less than
or equal to x. That is, A = (t : t ≤ x) and t ∈ R.
2. Let de�ne the function F(x) by

F (x) = P (X ≤ x) =
∑
t∈A

f (t) . (1.1)

The function F(x) is called the distribution function (sometimes cumulative distribution
function) of the discrete-type random variable X.

Several properties of a distribution function F(x) can be listed as a consequence of the fact that probability
must be a value between 0 and 1, inclusive:
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• 0 ≤ F (x) ≤ 1 because F(x) is a probability,
• F(x) is a nondecreasing function of x,
• F (y) = 1 , where y is any value greater than or equal to the largest value in R; and F (z) = 0 , where

z is any value less than the smallest value in R;
• If X is a random variable of the discrete type, then F(x) is a step function, and the height at a step at

x, x ∈ R, equals the probability P (X = x) .

Note: It is clear that the probability distribution associated with the random variable X can be
described by either the distribution function F(x) or by the probability density function f(x). The
function used is a matter of convenience; in most instances, f(x) is easier to use than F(x).
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Graphical representation of the relationship between p.d.f. and c.d.f.

Figure 1.1: Area under p.d.f. curve to a equal to a value of c.d.f. curve at a point a.
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De�nition 3: MATHEMATICAL EXPECTATION
If f(x) is the p.d.f. of the random variable X of the discrete type with space R and if the summation∑

R

u (x) f (x) =
∑
x∈R

u (x) f (x) (1.2)

exists, then the sum is called the mathematical expectation or the expected value of the
function u(X), and it is denoted by E [u (X)] . That is,

E [u (X)] =
∑
R

u (x) f (x) . (1.3)

We can think of the expected value E [u (X)] as a weighted mean of u(x), x ∈ R, where the weights
are the probabilities f (x) = P (X = x) .

REMARK: The usual de�nition of the mathematical expectation of u(X) requires that the sum
converges absolutely; that is,

∑
x∈R |u (x) |f (x) exists.

There is another important observation that must be made about consistency of this de�nition. Certainly,
this function u(X) of the random variable X is itself a random variable, say Y. Suppose that we �nd the
p.d.f. of Y to be g(y) on the support R1 . Then E(Y) is given by the summation

∑
y∈R1

yg (y)
In general it is true that ∑

R

u (x) f (x) =
∑
y∈R1

yg (y) ;

that is, the same expectation is obtained by either method.

Example 1.3
Let X be the random variable de�ned by the outcome of the cast of the die. Thus the p.d.f. of X
is

f (x) = 1
6 , x = 1, 2, 3, 4, 5, 6.

In terms of the observed value x, the function is as follows

u (x) = {
1, x = 1, 2, 3,

5, x = 4, 5,

35, x = 6.

The mathematical expectation is equal to

6∑
x=1

u (x) f (x) = 1
(

1
6

)
+1
(

1
6

)
+1
(

1
6

)
+5
(

1
6

)
+5
(

1
6

)
+35

(
1
6

)
= 1

(
3
6

)
+5
(

2
6

)
+35

(
1
6

)
= 8. (1.4)

Example 1.4
Let the random variable X have the p.d.f. f (x) = 1

3 , x ∈ R, where R ={-1,0,1}. Let u (X) = X2.
Then ∑

x∈R
x2f (x) = (−1)2

(
1
3

)
+ (0)2

(
1
3

)
+ (1)2

(
1
3

)
=

2
3
. (1.5)

However, the support of random variable Y = X2 is R1 = (0, 1) and

P (Y = 0) = P (X = 0) = 1
3

P (Y = 1) = P (X = −1) + P (X = 1) = 1
3 + 1

3 = 2
3 .
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That is,

g (y) = {
1
3 , y = 0,
2
3 , y = 1;

and R1. Hence∑
y∈R1

yg (y) = 0
(

1
3

)
+ 1

(
2
3

)
, which illustrates the preceding observation.

Theorem 1.1:
When it exists, mathematical expectation E satis�es the following properties:

1. If c is a constant, E(c)=c,
2. If c is a constant and u is a function, E [cu (X)] = cE [u (X)],
3. If c1 and c2 are constants and u1 and u2 are functions, then E [c1u1 (X) + c2u2 (X)] =
c1E [u1 (X)] + c2E [u2 (X)]

Proof: First, we have for the proof of (1) that
E (c) =

∑
R cf (x) = c

∑
R f (x) = c

because
∑
R f (x) = 1.

Proof: Next, to prove (2), we see that
E [cu (X)] =

∑
R cu (x) f (x) = c

∑
R u (x) f (x) = cE [u (X)] .

Proof: Finally, the proof of (3) is given by
E [c1u1 (X) + c2u2 (X)] =

∑
R [c1u1 (x) + c2u2 (x)] f (x) =

∑
R c1u1 (x) f (x) +∑

R c2u2 (x) f (x) .
By applying (2), we obtain
E [c1u1 (X) + c2u2 (X)] = c1E [u1 (x)] + c2E [u2 (x)] .
Property (3) can be extended to more than two terms by mathematical induction; That is, we

have
3'. E

[∑k
i=1 ciui (X)

]
=
∑k
i=1 ciE [ui (X)] .

Because of property (3'), mathematical expectation E is called a linear or distributive operator.

Example 1.5
Let X have the p.d.f. f (x) = x

10 , x=1,2,3,4.
then

E (X) =
∑4
x=1 x

(
x
10

)
= 1

(
1
10

)
+ 2

(
2
10

)
+ 3

(
3
10

)
+ 4

(
4
10

)
= 3

E
(
X2
)

=
∑4
x=1 x

2
(
x
10

)
= 12

(
1
10

)
+ 22

(
2
10

)
+ 32

(
3
10

)
+ 42

(
4
10

)
= 10,

and
E [X (5−X)] = 5E (X)− E

(
X2
)

= (5) (3)− 10 = 5.

see also: the MEAN, VARIANCE, and STANDARD DEVIATION (Section 1.3.1: The MEAN,
VARIANCE, and STANDARD DEVIATION)

1.2 MATHEMATICAL EXPECTATION2

1.2.1 MATHEMATICAL EXPECTIATION

De�nition 4: MATHEMATICAL EXPECTIATION
If f (x) is the p.d.f. of the random variable X of the discrete type with space R and if the summation

2This content is available online at <http://cnx.org/content/m13530/1.2/>.
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∑
R

u (x) f (x) =
∑
x∈R

u (x) f (x) . (1.6)

exists, then the sum is called the mathematical expectation or the expected value of the function
u (X) , and it is denoted by E [u (x)] . That is,

E [u (X)] =
∑
R

u (x) f (x) . (1.7)

We can think of the expected value E [u (x)] as a weighted mean of u (x) , x ∈ R, where the weights are the
probabilities f (x) = P (X = x).

REMARK: The usual de�nition of the mathematical expectation of u (X) requires that the sum
converges absolutely; that is,

∑
x∈R |u (x) |f (x) exists.

There is another important observation that must be made about consistency of this de�nition. Certainly,
this function u (X) of the random variable X is itself a random variable, say Y. Suppose that we �nd the
p.d.f. of Y to be g (y) on the support R1 . Then, E (Y ) is given by the summation

∑
y∈R1

yg (y) .
In general it is true that

∑
R u (x) f (x) =

∑
y∈R1

yg (y).
This is, the same expectation is obtained by either method.
Example 1.6
Let X be the random variable de�ned by the outcome of the cast of the die. Thus the p.d.f. of X
is

f (x) = 1
6 , x = 1, 2, 3, 4, 5, 6.

In terms of the observed value x, the function is as follows

u (x) = {
1, x = 1, 2, 3,

5, x = 4, 5,

35, x = 6.
The mathematical expectation is equal to∑6
x=1 u (x) f (x) = 1

(
1
6

)
+ 1

(
1
6

)
+ 1

(
1
6

)
+ 5

(
1
6

)
+ 5

(
1
6

)
+ 35

(
1
6

)
= 1

(
3
6

)
+ 5

(
2
6

)
+ 35

(
1
6

)
= 8.

Example 1.7
Let the random variable X have the p.d.f.
f (x) = 1

3 , x ∈ R,
where, R = (−1, 0, 1) . Let u (X) = X2 . Then∑
x∈R x

2f (x) = (−1)2
(

1
3

)
+ (0)2

(
1
3

)
+ (1)2

(
1
3

)
= 2

3 .
However, the support of random variable Y = X2 is R1 = (0, 1) and

P (Y = 0) = P (X = 0) = 1
3

P (Y = 1) = P (X = −1) + P (X = 1) = 1
3 + 1

3 = 2
3 .

That is, g (y) = {
1
3 , y = 0,
2
3 , y = 1;

and R1 = (0, 1) . Hence

∑
y∈R1

yg (y) = 0
(

1
3

)
+ 1

(
2
3

)
=

2
3
,

which illustrates the preceding observation.

Theorem 1.2:
When it exists, mathematical expectation E satis�es the following properties:

1. If c is a constant, E (c) = c,
2. If c is a constant and u is a function, E [cu (X)] = cE [u (X)] ,
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3. If c1 and c2 are constants and u1 and u2 are functions, then E [c1u1 (X) + c2u2 (X)] =
c1E [u1 (X)] + c2E [u2 (X)] .

Proof: First, we have for the proof of (1) that

E (c) =
∑
R

cf (x) = c
∑
R

f (x) = c,

because
∑
R f (x) = 1.

Proof: Next, to prove (2), we see that

E [cu (X)] =
∑
R

cu (x) f (x) = c
∑
R

u (x) f (x) = cE [u (X)] .

Proof: Finally, the proof of (3) is given by

E [c1u1 (X) + c2u2 (X)] =
∑
R

[c1u1 (x) + c2u2 (x)] f (x) =
∑
R

c1u1 (x) f (x) +
∑
R

c2u2 (x) f (x) .

By applying (2), we obtain

E [c1u1 (X) + c2u2 (X)] = c1E [u1 (x)] + c2E [u2 (x)] .

Property (3) can be extended to more than two terms by mathematical induction; that is, we
have (3')

E

[
k∑
i=1

ciui (X)

]
=

k∑
i=1

ciE [ui (X)] .

Because of property (3'), mathematical expectation E is called a linear or distributive op-
erator.

Example 1.8
Let X have the p.d.f. f (x) = x

10 , x = 1, 2, 3, 4, then

E (X) =
4∑

x=1

x
( x

10

)
= 1

(
1
10

)
+ 2

(
2
10

)
+ 3

(
3
10

)
+ 4

(
4
10

)
= 3,

E
(
X2
)

=
4∑

x=1

x2
( x

10

)
= 12

(
1
10

)
+ 22

(
2
10

)
+ 32

(
3
10

)
+ 42

(
4
10

)
= 10,

and
E [X (5−X)] = 5E (X)− E

(
X2
)

= (5) (3)− 10 = 5.

1.3 THE MEAN, VARIANCE, AND STANDARD DEVIATION3

1.3.1 The MEAN, VARIANCE, and STANDARD DEVIATION

1.3.1.1 MEAN and VARIANCE

Certain mathematical expectations are so important that they have special names. In this section we consider
two of them: the mean and the variance.

3This content is available online at <http://cnx.org/content/m13122/1.3/>.
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Mean Value
If X is a random variable with p.d.f. f (x) of the discrete type and space R=(b1, b2, b3, ...), then E (X) =∑
R xf (x) = b1f (b1) + b2f (b2) + b3f (b3) + ... is the weighted average of the numbers belonging to R, where

the weights are given by the p.d.f. f (x).
We call E (X) the mean of X (or the mean of the distribution) and denote it by µ. That is,

µ = E (X).

REMARK: In mechanics, the weighted average of the points b1, b2, b3, ... in one-dimensional space
is called the centroid of the system. Those without the mechanics background can think of the
centroid as being the point of balance for the system in which the weights f (b1) , f (b2) , f (b3) , ...
are places upon the points b1, b2, b3, ....

Example 1.9
Let X have the p.d.f.

f (x) = {
1
8 , x = 0, 3,
3
8 , x = 1, 2.

The mean of X is

µ = E

[
X = 0

(
1
8

)
+ 1

(
3
8

)
+ 2

(
3
8

)
+ 3

(
1
8

)
=

3
2
.

The example below shows that if the outcomes of X are equally likely (i.e., each of the outcomes has the
same probability), then the mean of X is the arithmetic average of these outcomes.

Example 1.10
Roll a fair die and let X denote the outcome. Thus X has the p.d.f.

f (x) =
1
6
, x = 1, 2, 3, 4, 5, 6.

Then,

E (X) =
6∑

x=1

x

(
1
6

)
=

1 + 2 + 3 + 4 + 5 + 6
6

=
7
2
,

which is the arithmetic average of the �rst six positive integers.

Variance
It was denoted that the mean µ = E (X) is the centroid of a system of weights of measure of the central

location of the probability distribution of X. A measure of the dispersion or spread of a distribution
is de�ned as follows:

If u (x) = (x− µ)2 and E
[
(X − µ)2

]
exists, the variance, frequently denoted by σ2 or V ar (X), of a

random variable X of the discrete type (or variance of the distribution) is de�ned by

σ2 = E
[
(X − µ)2

]
=
∑
R

(x− µ)2f (x) . (1.8)

The positive square root of the variance is called the standard deviation of X and is denoted by

σ =
√
V ar (X) =

√
E
[
(X − µ)2

]
. (1.9)

Example 1.11
Let the p.d.f. of X by de�ned by

f (x) =
x

6
, x = 1, 2, 3.
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The mean of X is

µ = E (X) = 1
(

1
6

)
+ 2

(
2
6

)
+ 3

(
3
6

)
=

7
3
.

To �nd the variance and standard deviation of X we �rst �nd

E
(
X2
)

= 12

(
1
6

)
+ 22

(
2
6

)
+ 32

(
3
6

)
=

36
6

= 6.

Thus the variance of X is

σ2 = E
(
X2
)
− µ2 = 6−

(
7
3

)2

=
5
9
,

and the standard deviation of X is

Example 1.12
Let X be a random variable with mean µx and variance σ2

x. Of course, Y = aX + b, where a and
b are constants, is a random variable, too. The mean of Y is

µY = E (Y ) = E (aX + b) = aE (X) + b = aµX + b.

Moreover, the variance of Y is

σ2
Y = E

[
(Y − µY )2

]
= E

[
(aX + b− aµX − b)2

]
= E

[
a2(X − µX)2

]
= a2σ2

X .

Moments of the distribution
Let r be a positive integer. If

E (Xr) =
∑
R

xrf (x)

exists, it is called the rth moment of the distribution about the origin. The expression moment has its
origin in the study of mechanics.

In addition, the expectation

E [(X − b)r] =
∑
R

xrf (x)

is called the rth moment of the distribution about b. For a given positive integer r.

E [(X)r] = E [X (X − 1) (X − 2) · · · (X − r + 1)]

is called the rth factorial moment.

Note That: The second factorial moment is equal to the di�erence of the second and �rst
moments:

E [X (X − 1)] = E
(
X2
)
− E (X) .

There is another formula that can be used for computing the variance that uses the second factorial moment
and sometimes simpli�es the calculations.

First �nd the values of E (X) and E [X (X − 1)]. Then

σ2 = E [X (X − 1)] + E (X)− [E (X)]2,
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since using the distributive property of E, this becomes

σ2 = E
(
X2
)
− E (X) + E (X)− [E (X)]2 = E

(
X2
)
− µ2.

Example 1.13
Let continue with example 4 (Example 1.12), it can be �nd that

E [X (X − 1)] = 1 (0)
(

1
6

)
+ 2 (1)

(
2
6

)
+ 3 (2)

(
3
6

)
=

22
6
.

Thus

σ2 = E [X (X − 1)] + E (X)− [E (X)]2 =
22
6

+
7
3
−
(

7
3

)2

=
5
9
.

REMARK: Recall the empirical distribution is de�ned by placing the weight (probability) of 1/n
on each of n observations x1, x2, ..., xn. Then the mean of this empirical distribution is

n∑
i=1

xi
1
n

=
∑n
i=1 xi
n

= x.

The symbol x represents the mean of the empirical distribution. It is seen that x is usually close in
value to µ = E (X); thus, when µ is unknown, x will be used to estimate µ.

Similarly, the variance of the empirical distribution can be computed. Let v denote this variance
so that it is equal to

v =
n∑
i=1

(xi − x)
2

1
n

=
n∑
i=1

x2
i

1
n
− x2 =

1
n

n∑
i=1

x2
i − x2.

This last statement is true because, in general,

σ2 = E
(
X2
)
− µ2.

NOTE THAT: There is a relationship between the sample variance s2 and variance v of the
empirical distribution, namely s2 = ns/ (n− 1). Of course, with large n, the di�erence between s2

and v is very small. Usually, we use s2 to estimate σ2 when σ2 is unknown.

SEE ALSO: BERNOULLI TRIALS and BINOMIAL DISTRIBUTION (Section 1.4.1:
BERNOULLI TRIALS AND THE BINOMIAL DISTRIBUTION)

1.4 BERNOULLI TRIALS and the BINOMIAL DISTRIBUTION4

1.4.1 BERNOULLI TRIALS AND THE BINOMIAL DISTRIBUTION

A Bernoulli experiment is a random experiment, the outcome of which can be classi�ed in but one of
two mutually exclusive and exhaustive ways, mainly, success or failure (e.g., female or male, life or death,
nondefective or defective).

A sequence of Bernoulli trials occurs when a Bernoulli experiment is performed several independent
times so that the probability of success, say, p, remains the same from trial to trial. That is, in such a
sequence we let p denote the probability of success on each trial. In addition, frequently q = 1 − p denote
the probability of failure; that is, we shall use q and 1− p interchangeably.

4This content is available online at <http://cnx.org/content/m13123/1.3/>.
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1.4.1.1 Bernoulli distribution

Let X be a random variable associated with Bernoulli trial by de�ning it as follows:
X(success)=1 and X(failure)=0.
That is, the two outcomes, success and failure, are denoted by one and zero, respectively. The p.d.f.

of X can be written as

f (x) = px(1− p)1−x, (1.10)

and we say that X has a Bernoulli distribution. The expected value of is

µ = E (X) =
1∑

X=0

xpx(1− p)1−x = (0) (1− p) + (1) (p) = p, (1.11)

and the variance of X is

σ2 = V ar (X) =
1∑

x=0

(x− p)2px(1− p)1−x = p2 (1− p) + (1− p)2p = p (1− p) = pq. (1.12)

It follows that the standard deviation of X is σ =
√
p (1− p) =

√
pq.

In a sequence of n Bernoulli trials, we shall let Xi denote the Bernoulli random variable associated with
the ith trial. An observed sequence of n Bernoulli trials will then be an n-tuple of zeros and ones.

Binomial Distribution
In a sequence of Bernoulli trials we are often interested in the total number of successes and not in the

order of their occurrence. If we let the random variable X equal the number of observed successes in n
Bernoulli trials, the possible values of X are 0,1,2,. . .,n. If x success occur, where x = 0, 1, 2, ..., n , then n-x
failures occur. The number of ways of selecting x positions for the x successes in the x trials is n

x

 =
n!

x! (n− x)!
.

Since the trials are independent and since the probabilities of success and failure on each trial are, respectively,
p and q = 1− p , the probability of each of these ways is px(1− p)n−x.. Thus the p.d.f. of X, say f (x) , is

the sum of the probabilities of these

 n

x

 mutually exclusive events; that is,

f (x) =

 n

x

 px(1− p)n−x, x = 0, 1, 2, ..., n.

These probabilities are called binomial probabilities, and the random variable X is said to have a bino-
mial distribution.

Summarizing, a binomial experiment satis�es the following properties:

1. A Bernoulli (success-failure) experiment is performed n times.
2. The trials are independent.
3. The probability of success on each trial is a constant p; the probability of failure is q = 1− p .
4. The random variable X counts the number of successes in the n trials.

A binomial distribution will be denoted by the symbol b (n, p) and we say that the distribution of X is b (n, p)
. The constants n and p are called the parameters of the binomial distribution, they correspond to
the number n of independent trials and the probability p of success on each trial. Thus, if we say that the
distribution of X is b (12, 14) , we mean that X is the number of successes in n =12 Bernoulli trials with
probability p = 1

4 of success on each trial.
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Example 1.14
In the instant lottery with 20% winning tickets, if X is equal to the number of winning tickets
among n =8 that are purchased, the probability of purchasing 2 winning tickets is

f (2) = P (X = 2) =

 8

2

 (0.2)2(0.8)6 = 0.2936.

The distribution of the random variable X is b (8, 0.2) .

Example 1.15
Leghorn chickens are raised for lying eggs. If p =0.5 is the probability of female chick hatching,
assuming independence, the probability that there are exactly 6 females out of 10 newly hatches
chicks selected at random is 10

6

(1
2

)6(1
2

)4

= P (X ≤ 6)− P (X ≤ 5) = 0.8281− 0.6230 = 0.2051.

Since
P (X ≤ 6) = 0.8281

and
P (X ≤ 5) = 0.6230,

which are tabularized values, the probability of at least 6 females chicks is

10∑
x=6

 10

x

(1
2

)x(1
2

)10−x

= 1− P (X ≤ 5) = 1− 0.6230 = 0.3770.

Example 1.16
Suppose that we are in those rare times when 65% of the American public approve of the way the
President of The United states is handling his job. Take a random sample of n =8 Americans and
let Y equal the number who give approval. Then the distribution of Y is b (8, 0.65) . To �nd

P (Y ≥ 6)

note that

P (Y ≥ 6) = P (8− Y ≤ 8− 6) = P (X ≤ 2) ,

where
X = 8− Y

counts the number who disapprove. Since q = 1− p = 0.35 equals the probability if disapproval by
each person selected, the distribution of X is b (8, 0.35). From the tables, since

P (X ≤ 2) = 0.4278

it follows that
P (Y ≥ 6) 0.4278.

Similarly,

P (Y ≤ 5) = P (8− Y ≥ 8− 5) = P (X ≥ 3) = 1− P (X ≤ 2) = 1− 0.4278 = 0.5722
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and

P (Y = 5) = P (8− Y = 8− 5) = P (X = 3) = P (X ≤ 3)− P (X ≤ 2) = 0.7064− 0.4278 = 0.2786.

RECALL THAT: if n is a positive integer, then

(a+ b)n =
n∑
x=0

 x

n

 bxan−x.

Thus the sum of the binomial probabilities, if we use the above binomial expansion with b = p and
a = 1− p , is

n∑
x=0

 n

x

 px(1− p)n−x = [(1− p) + p]n = 1,

A result that had to follow from the fact that f (x) is a p.d.f. We use the binomial expansion to �nd the
mean and the variance of the binomial random variable X that is b (n, p) . The mean is given by

µ = E (X) =
n∑
x=0

x
n!

x! (n− x)!
px(1− p)n−x. (1.13)

Since the �rst term of this sum is equal to zero, this can be written as

µ =
n∑
x=0

n!
(x− 1)! (n− x)!

px(1− p)n−x. (1.14)

because x/x! = 1/ (x− 1)! when x > 0.
To �nd the variance, we �rst determine the second factorial moment E [X (X − 1)] :

E [X (X − 1)] =
n∑
x=0

x (x− 1)
n!

x! (n− x)!
px(1− p)n−x. (1.15)

The �rst two terms in this summation equal zero; thus we �nd that

E [X (X − 1)] =
n∑
x=2

n!
(x− 2)! (n− x)!

px(1− p)n−x.

After observing that x (x− 1) /x! = 1/ (x− 2)! when x > 1 . Letting k = x− 2 , we obtain

E [X (X − 1)] =
n−2∑
x=0

n!
k! (n− k − 2)!

pk+2(1− p)n−k−2
. = n (n− 1) p2

n−2∑
x=0

(n− 2)!
k! (n− 2− k)!

pk(1− p)n−2−k
.

Since the last summand is that of the binomial p.d.f. b (n− 2, p) , we obtain

E [X (X − 1)] = n (n− 1) p2.

Thus,

σ2 = V ar (X) = E
(
X2
)
− [E (X)]2 = E [X (X − 1)] + E (X)− [E (X)]2

= n (n− 1) p2 + np− (np)2 = −np2 + np = np (1− p) .
Summarizing,
if X is b (n, p) , we obtain

µ = np, σ2 = np (1− p) = npq, σ =
√
np (1− p).
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Note That: When p is the probability of success on each trial, the expected number of successes
in n trials is np, a result that agrees with most of our intuitions.

1.5 GEOMETRIC DISTRIBUTION5

1.5.1 GEOMETRIC DISTRIBUTION

To obtain a binomial random variable, we observed a sequence of n Bernoulli trials and counted the number
of successes. Suppose now that we do not �x the number of Bernoulli trials in advance but instead continue
to observe the sequence of Bernoulli trials until a certain number r, of successes occurs. The random
variable of interest is the number of trials needed to observe the rth success.

Let �rst discuss the problem when r =1. That is, consider a sequence of Bernoulli trials with probability
p of success. This sequence is observed until the �rst success occurs. Let X denot the trial number on which
the �rst success occurs.

For example, if F and S represent failure and success, respectively, and the sequence starts with
F,F,F,S,. . ., then X =4. Moreover, because the trials are independent, the probability of such sequence
is

P (X = 4) = (q) (q) (q) (p) = q3p = (1− p)3p.

In general, the p.d.f. f (x) = P (X = x) , of X is given by f (x) = (1− p)x−1
p, x = 1, 2, ..., because

there must be x -1 failures before the �rst success that occurs on trail x. We say that X has a geometric
distribution.

Recall that: for a geometric series, the sum is given by

∞∑
k=0

ark =
∞∑
k=1

ark−1 =
a

1− r
,

when |r| < 1.

Thus,
∞∑
x=1

f (x) =
∞∑
x=1

(1− p)k−1
p =

p

1− (1− p)
= 1,

so that f (x) does satisfy the properties of a p.d.f..
From the sum of geometric series we also note that, when k is an integer,

P (X > k) =
∞∑

x=k+1

(1− p)x−1
p =

(1− p)kp
1− (1− p)

= (1− p)k = qk,

and thus the value of the distribution function at a positive integer k is

P (X ≤ k) =
∞∑

x=k+1

(1− p)x−1
p = 1− P (X > k) = 1− (1− p)k = 1− qk.

Example 1.17
Some biology students were checking the eye color for a large number of fruit �ies. For the
individual �y, suppose that the probability of white eyes is 14 and the probability of red eyes is 34

5This content is available online at <http://cnx.org/content/m13124/1.3/>.
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, and that we may treat these �ies as independent Bernoulli trials. The probability that at least
four �ies have to be checked for eye color to observe a white-eyed �y is given by

P (X ≥ 4) = P (X > 3) = q3 =
(

3
4

)3

= 0.422.

The probability that at most four �ies have to be checked for eye color to observe a white-eyed
�y is given by

P (X ≤ 4) = 1− q4 = 1−
(

3
4

)4

= 0.684.

The probability that the �rst �y with white eyes is the fourth �y that is checked is

P (X = 4) = q4−1p =
(

3
4

)3(1
4

)
= 0.105.

It is also true that

P (X = 4) = P (X ≤ 4)− P (X ≤ 3) =

[
1−

(
3
4

)4
]
−

[
1−

(
3
4

)3
]

=
(

3
4

)3(1
4

)
.

In general,

f (x) = P (X = x) =
(

3
4

)x−1(1
4

)
, x = 1, 2, 3, ...

To �nd a mean and variance for the geometric distribution, let use the following results about the sum and
the �rst and second derivatives of a geometric series. For −1 < r < 1 , let

g (r) =
∞∑
k=0

ark =
a

1− r
.

Then

g' (r) =
∞∑
k=1

akrk−1 =
a

(1− r)2
,

and

g'' (r) =
∞∑
k=2

ak (k − 1) rk−2 =
2a

(1− r)3
.

If X has a geometric distribution and 0 < p < 1 , then the mean of X is given by

E (X) =
∞∑
x=1

xqx−1p =
p

(1− q)2
=

1
p
, (1.16)

using the formula for g' (x) with a = p and r = q .

Note: for example, that if p =1/4 is the probability of success, then

E (X) = 1/ (1/4) = 4

trials are needed on the average to observe a success.
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To �nd the variance of X, let �rst �nd the second factorial moment E [X (X − 1)]. We have

E [X (X − 1)] =
∞∑
x=1

x (x− 1) qx−1p =
∞∑
x=1

pqx (x− 1) qx−2 =
2pq

(1− q)3
=

2q
p2
.

Using formula for g'' (x) with a = pq and r = q . Thus the variance of X is

V ar (X) = E
(
X2
)
− [E (X)]2 = {E [X (X − 1)] + E (X)} − [E (X)]2 =

= 2q
p2 + 1

p −
1
p2 = 2q+p−1

p2 = 1−p
p2 .

The standard deviation of X is
σ =

√
(1− p) /p2.

Example 1.18
Continuing with example 1 (Example 1.17), with p =1/4, we obtain

µ = 1
1/4 = 4,

σ2 = 3/4

(1/4)2
= 12,

and
σ =
√

12 = 3.464.

see also: Binomial Distribution (Section 1.4.1.1.1)

see also: Poisson Distribution (Section 1.6.1: POISSON DISTRIBUTION)

1.6 POISSON DISTRIBUTION6

1.6.1 POISSON DISTRIBUTION

Some experiments results in counting the number of times particular events occur in given times of on given
physical objects. For example, we would count the number of phone calls arriving at a switch board between
9 and 10 am, the number of �aws in 100 feet of wire, the number of customers that arrive at a ticket window
between 12 noon and 2 pm, or the number of defects in a 100-foot roll of aluminum screen that is 2 feet
wide. Each count can be looked upon as a random variable associated with an approximate Poisson process
provided the conditions in the de�nition below are satis�ed.

De�nition 5: POISSON PROCCESS
Let the number of changes that occur in a given continuous interval be counted. We have an
approximate Poisson process with parameter λ > 0 if the following are satis�ed:

1. The number of changes occurring in nonoverlapping intervals are independent.
2. The probability of exactly one change in a su�ciently short interval of length h is approximately λh .
3. The probability of two or more changes in a su�ciently short interval is essentially zero.

6This content is available online at <http://cnx.org/content/m13125/1.3/>.
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Suppose that an experiment satis�es the three points of an approximate Poisson process. Let X denote the
number of changes in an interval of "length 1" (where "length 1" represents one unit of the quantity under
consideration). We would like to �nd an approximation for P (X = x) , where x is a nonnegative integer. To
achieve this, we partition the unit interval into n subintervals of equal length 1/n. If N is su�ciently large
(i.e., much larger than x), one shall approximate the probability that x changes occur in this unit interval
by �nding the probability that one change occurs exactly in each of exactly x of these n subintervals. The
probability of one change occurring in any one subinterval of length 1/n is approximately λ (1/n) by condition
(2). The probability of two or more changes in any one subinterval is essentially zero by condition (3). So
for each subinterval, exactly one change occurs with a probability of approximately λ (1/n) . Consider the
occurrence or nonoccurrence of a change in each subinterval as a Bernoulli trial. By condition (1) we have
a sequence of n Bernoulli trials with probability p approximately equal to λ (1/n). Thus an approximation
for P (X = x) is given by the binomial probability

n!
x! (n− x)!

(
λ

n

)x(
1− λ

n

)n−x
.

In order to obtain a better approximation, choose a large value for n. If n increases without bound, we
have that

lim
n→∞

n!
x! (n− x)!

(
λ

n

)x(
1− λ

n

)n−x
= lim
n→∞

n (n− 1) ... (n− x+ 1)
nx

λx

x!

(
1− λ

n

)n(
1− λ

n

)−x
.

Now, for �xed x, we have

lim
n→∞

n(n−1)...(n−x+1)
nx = lim

n→∞

[
1
(
1− 1

n

)
...
(
1− x−1

n

)]
= 1,

lim
n→∞

(
1− λ

n

)n
= e−λ,

and

lim
n→∞

(
1− λ

n

)−x
= 1.

Thus,

lim
n→∞

n!
x! (n− x)!

(
λ

n

)x(
1− λ

n

)n−x
=
λxe−λ

x!
= P (X = x) ,

approximately. The distribution of probability associated with this process has a special name.
De�nition 6: POISSON DISTRIBUTION
We say that the random variable X has a Poisson distribution if its p.d.f. is of the form

f (x) =
λxe−λ

x!
, x = 0, 1, 2, ...,

where λ > 0.
It is easy to see that f (x) enjoys the properties pf a p.d.f. because clearly f (x) ≥ 0 and, from the

Maclaurin's series expansion of eλ , we have

∞∑
x=0

λxe−λ

x!
= e−λ

∞∑
x=0

λx

x!
= e−λeλ = 1.

To discover the exact role of the parameter λ > 0 , let us �nd some of the characteristics of the Poisson
distribution . The mean for the Poisson distribution is given by

E (X) =
∞∑
x=0

x
λxe−λ

x!
= e−λ

∞∑
x=1

x
λx

(x− 1)!
,
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because (0) f (0) = 0 and x/x! = 1/ (x− 1)! , when x > 0 .
If we let k = x− 1 , then

E (X) = e−λ
∞∑
k=0

λk+1

k!
= λe−λ

∞∑
k=0

λk

k!
= λe−λeλ = λ.

That is, the parameter λ is the mean of the Poisson distribution. On the Figure 1 (Figure 1.2:
Poisson Distribution) is shown the p.d.f. and c.d.f. of the Poisson Distribution for λ = 1, λ = 4, λ = 10.

Poisson Distribution

(a) (b)

Figure 1.2: The p.d.f. and c.d.f. of the Poisson Distribution for λ = 1, λ = 4, λ = 10. (a) The p.d.f.
function. (b) The c.d.f. function.

To �nd the variance, we �rst determine the second factorial moment E [X (X − 1)]. We have,

E [X (X − 1)] =
∞∑
x=0

x (x− 1)
λxe−λ

x!
= e−λ

∞∑
x=2

λx

(x− 2)!
,

because (0) (0− 1) f (0) = 0, (1) (1− 1) f (1) = 0 , and x (x− 1) /x! = 1/ (x− 2)! , when x > 1 .
If we let k = x− 2 , then

E [X (X − 1)] = e−λ
∞∑
k=0

λk+2

k!
= λ2e−λ

∞∑
k=0

λx

k!
= λ2e−λeλ = λ2.

Thus,

V ar (X) = E
(
X2
)
− [E (X)]2 = E [X (X − 1)] + E (X)− [E (X)]2 = λ2 + λ− λ2 = λ.

That is, for the Poisson distribution, µ = σ2 = λ .
Example 1.19
Let X have a Poisson distribution with a mean of λ = 5 , (it is possible to use the tabularized
Poisson distribution).

P (X ≤ 6) =
∑6
x=0

5xe−5

x! = 0.762,

P (X > 5) = 1− P (X ≤ 5) = 1− 0.616 = 0.384,
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and
P (X = 6) = P (X ≤ 6)− P (X ≤ 5) = 0.762− 0.616 = 0.146.

Example 1.20
Telephone calls enter a college switchboard on the average of two every 3 minutes. If one assumes
an approximate Poisson process, what is the probability of �ve or more calls arriving in a 9-minute
period? Let X denotes the number of calls in a 9-minute period. We see that E (X) = 6 ; that is,
on the average, sic calls will arrive during a 9-minute period. Thus using tabularized data,

P (X ≥ 5) = 1− P (X ≤ 4) = 1−
4∑

x=0

6xe−6

x!
= 1− 0.285 = 0.715.

Note That: Not only is the Poisson distribution important in its own right, but it can also be
used to approximate probabilities for a binomial distribution.

If X has a Poisson distribution with parameter λ , we saw that with n large,

P (X = x) ≈

 n

x

(λ
n

)x(
1− λ

n

)n−x
,

where, p = λ/n so that λ = np in the above binomial probability. That is, if X has the binomial distribution
b (n, p) with large n, then

(np)xe−np

x!
=

 n

x

 px(1− p)n−x.

This approximation is reasonably good if n is large. But since λ was �xed constant in that earlier
argument, p should be small since np = λ . In particular, the approximation is quite accurate if n ≥ 20 and
p ≤ 0.05 , and it is very good if n ≥ 100 and np ≤ 10 .

Example 1.21

A manufacturer of Christmas tree bulbs knows that 2% of its bulbs are defective. Approximate
the probability that a box of 100 of these bulbs contains at most three defective bulbs. Assuming
independence, we have binomial distribution with parameters p=0.02 and n=100. The Poisson
distribution with λ = 100 (0.02) = 2 gives

3∑
x=0

2xe−2

x!
= 0.857,

using the binomial distribution, we obtain, after some tedious calculations,

3∑
x=0

 100

x

 (0.02)x(0.98)100−x = 0.859.

Hence, in this case, the Poisson approximation is extremely close to the true value, but much
easier to �nd.



Chapter 2

Continuous Distributions

2.1 CONTINUOUS DISTRIBUTION1

2.1.1 CONTINUOUS DISTRIBUTION

2.1.1.1 RANDOM VARIABLES OF THE CONTINUOUS TYPE

Random variables whose spaces are not composed of a countable number of points but are intervals or a
union of intervals are said to be of the continuous type. Recall that the relative frequency histogram h (x)
associated with n observations of a random variable of that type is a nonnegative function de�ned so that
the total area between its graph and the x axis equals one. In addition, h (x) is constructed so that the
integral

b∫
a

h (x) dx (2.1)

is an estimate of the probability P (a < X < b) , where the interval (a, b) is a subset of the space R of the
random variable X.

Let now consider what happens to the function h (x) in the limit, as n increases without bound and as
the lengths of the class intervals decrease to zero. It is to be hoped that h (x) will become closer and closer
to some function, say f (x) , that gives the true probabilities , such as P (a < X < b) , through the integral

P (a < X < b) =

b∫
a

f (x) dx. (2.2)

De�nition 7: PROBABILITY DENSITY FUNCTION
1. Function f(x) is a nonnegative function such that the total area between its graph and the x axis
equals one.
2. The probability P (a < X < b) is the area bounded by the graph of f (x) , the x axis, and the
lines x = a and x = b .
3. We say that the probability density function (p.d.f.) of the random variable X of the
continuous type, with space R that is an interval or union of intervals, is an integrable function
f (x) satisfying the following conditions:

• f (x) > 0 , x belongs to R,

•
∫
R

f (x) dx = 1,

1This content is available online at <http://cnx.org/content/m13127/1.4/>.
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• The probability of the event A belongs to R is P (X) ∈ A
∫
A

f (x) dx.

Example 2.1
Let the random variable X be the distance in feet between bad records on a used computer tape.
Suppose that a reasonable probability model for X is given by the p.d.f.

f (x)
1
40
e−x/40, 0 ≤ x <∞.

Note That: R = (x : 0 ≤ x <∞) and f (x) for x belonging to R,

∫
R

f (x) dx =

∞∫
0

1
40
e−x/40dx = lim

b→∞

[
e−x/40

]b
0

= 1− lim
b→∞

e−b/40 = 1.

The probability that the distance between bad records is greater than 40 feet is

P (X > 40) =

∞∫
40

1
40
e−x/40dx = e−1 = 0.368.

The p.d.f. and the probability of interest are depicted in FIG.1 (Figure 2.1).
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Figure 2.1: The p.d.f. and the probability of interest.

We can avoid repeated references to the space R of the random variable X, one shall adopt the same
convention when describing probability density function of the continuous type as was in the discrete case.

Let extend the de�nition of the p.d.f. f (x) to the entire set of real numbers by letting it equal zero when,
x belongs to R. For example,

f (x) = {
1
40e
−x/40

0, elsewhere,
, 0 ≤ x <∞,

has the properties of a p.d.f. of a continuous-type random variable x having support (x : 0 ≤ x <∞) .
It will always be understood that f (x) = 0 , when x belongs to R, even when this is not explicitly written
out.

De�nition 8: PROBABILITY DENSITY FUNCTION
1. The distribution function of a random variable X of the continuous type, is de�ned in terms of
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the p.d.f. of X, and is given by

F (x) = P (X ≤ x) =

x∫
−∞

f (t) dt.

2. For the fundamental theorem of calculus we have, for x values for which the derivative F ' (x)
exists, that F'(x)=f (x).

Example 2.2
continuing with Example 1 (Example 2.1)

If the p.d.f. of X is

f (x) = {
0,−∞ < x < 0,
1
40e
−x/40, 0 ≤ x <∞,

The distribution function of X is F (x) = 0 for x ≤ 0

F (x) =

x∫
−∞

f (t) dt =

x∫
0

1
40
e−t/40dt = −e−t/40|x0 = 1− e−x/40.

Note That:

F (x) = {
0,−∞ < x < 0,
1
40e
−x/40, 0 < x <∞.

Also F ' (0) does not exist. Since there are no steps or jumps in a distribution function F (x) , of the
continuous type, it must be true that

P (X = b) = 0

for all real values of b. This agrees with the fact that the integral

b∫
a

f (x) dx

is taken to be zero in calculus. Thus we see that

P (a ≤ X ≤ b) = P (a < X < b) = P (a ≤ X < b) = P (a < X ≤ b) = F (b)− F (a) ,

provided that X is a random variable of the continuous type. Moreover, we can change the de�nition of a
p.d.f. of a random variable of the continuous type at a �nite (actually countable) number of points without
alerting the distribution of probability.

For illustration,

f (x) = {
0,−∞ < x < 0,
1
40e
−x/40, 0 ≤ x <∞,

and

f (x) = {
0,−∞ < x ≤ 0,
1
40e
−x/40, 0 < x <∞,

are equivalent in the computation of probabilities involving this random variable.
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Example 2.3
Let Y be a continuous random variable with the p.d.f. g (y) = 2y , 0 < y < 1 . The distribution
function of Y is de�ned by

G (y) =


0, y < 0,

1, y ≥ 1,
y∫
0

2tdt = y2, 0 ≤ y < 1.

Figure 2 (Figure 2.2) gives the graph of the p.d.f. g (y) and the graph of the distribution function
G (y).

Figure 2.2: The p.d.f. and the probability of interest.

For illustration of computations of probabilities, consider

P

(
1
2
< Y ≤ 3

4

)
= G

(
3
4

)
−G

(
1
2

)
=
(

3
4

)2

−
(

1
2

)2

=
5
16

and

P

(
1
4
≤ Y < 2

)
= G (2)−G

(
1
4

)
= 1−

(
1
4

)2

=
15
16
.
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Recall That: The p.d.f. f (x) of a random variable of the discrete type is bounded by one
because f (x) gives a probability, namely f (x) = P (X = x).

For random variables of the continuous type, the p.d.f. does not have to be bounded. The restriction is that
the area between the p.d.f. and the x axis must equal one. Furthermore, it should be noted that the p.d.f.
of a random variable X of the continuous type does not need to be a continuous function.

For example,

f (x) = {
1
2,0 < x < 1or2 < x < 3,

0, elsewhere,

enjoys the properties of a p.d.f. of a distribution of the continuous type, and yet f (x) had discontinuities
at x = 0, 1, 2, and 3. However, the distribution function associates with a distribution of the continuous
type is always a continuous function. For continuous type random variables, the de�nitions associated with
mathematical expectation are the same as those in the discrete case except that integrals replace summations.

FOR ILLUSTRATION, let X be a random variable with a p.d.f. f (x) . The expected value of X
or mean of X is

µ = E (X) =

∞∫
−∞

xf (x) dx.

The variance of X is

σ2 = V ar (X) =

∞∫
−∞

(x− µ)2f (x) dx.

The standard deviation of X is
σ =

√
V ar (X).

Example 2.4
For the random variable Y in the Example 3 (Example 2.3).

µ = E (Y ) =

1∫
0

y (2y) dy =
[(

2
3
y3

)]1
0

=
2
3

and

σ2 = V ar (Y ) = E
(
Y 2
)
− µ2

=
1∫
0

y2 (2y) dy −
(

2
3

)2 =
[(

1
2y

4
)]1

0
− 4

9 = 1
18 .

2.2 THE UNIFORM AND EXPONENTIAL DISTRIBUTIONS2

2.2.1 THE UNIFORM AND EXPONENTIAL DISTRIBUTIONS

2.2.1.1 The Uniform Distribution

Let the random variable X denote the outcome when a point is selected at random from the interval [a, b],
−∞ < a < b < ∞. If the experiment is performed in a fair manner, it is reasonable to assume that the

2This content is available online at <http://cnx.org/content/m13128/1.7/>.
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probability that the point is selected from the interval [a, x], a ≤ x < b is (x− a) (b− a). That is, the
probability is proportional to the length of the interval so that the distribution function of X is

F (x) =


0, x < a,

x−a
b−a , a ≤ x < b,

1, b ≤ x.

Because X is a continuous-type random variable, F ' (x) is equal to the p.d.f. of X whenever F ' (x) exists;
thus when a < x < b, we have

f (x) = F ' (x) = 1/ (b− a) .

De�nition 9: DEFINITION OF UNIFORM DISTRIBUTION
The random variable X has a uniform distribution if its p.d.f. is equal to a constant on its
support. In particular, if the support is the interval [a, b], then

f (x) =
1

b = a
, a ≤ x ≤ b. (2.3)

Moreover, one shall say that X is U (a, b). This distribution is referred to as rectangular because the
graph of f (x) suggest that name. See Figure1. (Figure 2.3) for the graph of f (x) and the distribution
function F(x).
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Figure 2.3: The graph of the p.d.f. of the uniform distriution.

Note that: We could have taken f (a) = 0 or f (b) = 0 without alerting the probabilities, since
this is a continuous type distribution, and it can be done in some cases.

The mean and variance of X are as follows:

µ =
a+ b

2
and

σ2 =
(b− a)2

12
.

An important uniform distribution is that for which a=0 and b =1, namely U (0, 1). If X is U (0, 1),
approximate values of X can be simulated on most computers using a random number generator. In fact,
it should be called a pseudo-random number generator (see the pseudo-numbers generation (Section 5.3.1:
THE IVERSE PROBABILITY METHOD FOR GENERATING RANDOM VARIABLES)) because the
programs that produce the random numbers are usually such that if the starting number is known, all
subsequent numbers in the sequence may be determined by simple arithmetical operations.
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2.2.1.2 An Exponential Distribution

Let turn to the continuous distribution that is related to the Poisson distribution (Section 1.6.1: POISSON
DISTRIBUTION). When previously observing a process of the approximate Poisson type, we counted the
number of changes occurring in a given interval. This number was a discrete-type random variable with a
Poisson distribution. But not only is the number of changes a random variable; the waiting times between
successive changes are also random variables. However, the latter are of the continuous type, since each of
then can assume any positive value.

Let W denote the waiting time until the �rst change occurs when observing the Poisson process (De�ni-
tion: "POISSON PROCCESS", p. 17) in which the mean number of changes in the unit interval is λ. Then
W is a continuous-type random variable, and let proceed to �nd its distribution function.

Because this waiting time is nonnegative, the distribution function F (w) = 0, w < 0. For w ≥ 0,

F (w) = P (W ≤ w) = 1− P (W > w) = 1− P (no_changes_in_ [0, w]) = 1− e−λw,

since that was previously discovered that e−λw equals the probability of no changes in an interval of
length w is proportional to w, namely, λw. Thus when w >0, the p.d.f. of W is given by

F ' (w) = λe−λw = f (w) .

De�nition 10: DEFINITION OF EXPONENTIAL DISTRIBUTION
Let λ = 1/θ, then the random variable X has an exponential distribution and its p.d.f. id
de�ned by

f (x) =
1
θ
e−x/θ, 0 ≤ x <∞, (2.4)

where the parameter θ > 0.
Accordingly, the waiting timeW until the �rst change in a Poisson process has an exponential distribution

with θ = 1/λ. The mean and variance for the exponential distribution are as follows: µ = θ and σ2 = θ2.
So if λ is the mean number of changes in the unit interval, then

θ = 1/λ

is the mean waiting for the �rst change. Suppose that λ=7 is the mean number of changes per minute; then
that mean waiting time for the �rst change is 1/7 of a minute.
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Figure 2.4: The graph of the p.d.f. of the exponential distriution.

Example 2.5
Let X have an exponential distribution with a mean of 40. The p.d.f. of X is

f (x) =
1
40
e−x/40, 0 ≤ x <∞.

The probability that X is less than 36 is

P (X < 36) =

36∫
0

1
40
e−x/40dx = 1− e−36/40 = 0.593.

Example 2.6
Let X have an exponential distribution with mean µ = θ. Then the distribution function of X is

F (x) = {
0,−∞ < x < 0,

1− e−x/θ, 0 ≤ x <∞.

The p.d.f. and distribution function are graphed in the Figure 3 (Figure 2.5) for θ=5.
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Figure 2.5: The p.d.f. and c.d.f. graphs of the exponential distriution with θ = 5 .

Note That: For an exponential random variable X, we have that

P (X > x) = 1− F (x) = 1−
(

1− e−x/θ
)

= e−x/θ.

2.3 THE GAMMA AND CHI-SQUARE DISTRIBUTIONS3

2.3.1 GAMMA AND CHI-SQUARE DISTRIBUTIONS

In the (approximate) Poisson process (De�nition: "POISSON PROCCESS", p. 17) with mean λ, we have
seen that the waiting time until the �rst change has an exponential distribution (Section 2.2.1.2: An Ex-
ponential Distribution). Let now W denote the waiting time until the αth change occurs and let �nd the
distribution of W. The distribution function of W ,when w ≥ 0 is given by

F (w) = P (W ≤ w) = 1− P (W > w) = 1− P (fewer_than_α_changes_occur_in_ [0, w])

= 1−
∑α−1
k=0

(λw)ke−λw

k! ,

3This content is available online at <http://cnx.org/content/m13129/1.3/>.
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since the number of changes in the interval [0, w] has a Poisson distribution with mean λw. Because W
is a continuous-type random variable, F ' (w) is equal to the p.d.f. of W whenever this derivative exists. We
have, provided w>0, that

F ' (w) = λe−λw − e−λw
∑α−1
k=1

[
k(λw)k−1λ

k! − (λw)kλ
k!

]
= λe−λw − e−λw

[
λ− λ(λw)α−1

(α−1)!

]
= λ(λw)α−1

(α−1)! e−λw.

2.3.1.1 Gamma Distribution

De�nition 11:
1. If w < 0, then F (w) = 0 and F ' (w) = 0, a p.d.f. of this form is said to be one of the gamma
type, and the random variable W is said to have the gamma distribution.
2. The gamma function is de�ned by

Γ (t) =

∞∫
0

yt−1e−ydy, 0 < t.

This integral is positive for 0 < t, because the integrand id positive. Values of it are often given in a
table of integrals. If t > 1, integration of gamma fnction of t by parts yields

Γ (t) =
[
−yt−1e−y

]∞
0

+

∞∫
0

(t− 1) yt−2e−ydy = (t− 1)

∞∫
0

yt−2e−ydy = (t− 1) Γ (t− 1) .

Example 2.7
Let Γ (6) = 5Γ (5) and Γ (3) = 2Γ (2) = (2) (1) Γ (1). Whenever t = n, a positive integer,
we have, be repeated application of Γ (t) = (t− 1) Γ (t− 1), that Γ (n) = (n− 1) Γ (n− 1) =
(n− 1) (n− 2) ... (2) (1) Γ (1) .

However,

Γ (1) =

∞∫
0

e−ydy = 1.

Thus when n is a positive integer, we have that Γ (n) = (n− 1)!; and, for this reason, the gamma
is called the generalized factorial.

Incidentally, Γ (1) corresponds to 0!, and we have noted that Γ (1) = 1, which is consistent with earlier
discussions.

2.3.1.1.1 SUMMARIZING

The random variable x has a gamma distribution if its p.d.f. is de�ned by

f (x) =
1

Γ (α) θα
xα−1e−x/θ, 0 ≤ x <∞. (2.5)

Hence, w, the waiting time until the α th change in a Poisson process, has a gamma distribution with
parameters α and θ = 1/λ.

Function f (x) actually has the properties of a p.d.f., because f (x) ≥ 0 and

∞∫
−∞

f (x) dx =

∞∫
0

xα−1e−x/θ

Γ (α) θα
dx,
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which, by the change of variables y = x/θ equals

∞∫
0

(θy)α−1
e−y

Γ (α) θα
θdy =

1
Γ (α)

∞∫
0

yα−1e−ydy =
Γ (α)
Γ (α)

= 1.

The mean and variance are: µ = αθ and σ2 = αθ2.

(a) Gamma Distribution (b)

Figure 2.6: The p.d.f. and c.d.f. graphs of the Gamma Distribution. (a) The c.d.f. graph. (b) The
p.d.f. graph.

Example 2.8
Suppose that an average of 30 customers per hour arrive at a shop in accordance with Poisson
process. That is, if a minute is our unit, then λ = 1/2. What is the probability that the shopkeeper
will wait more than 5 minutes before both of the �rst two customers arrive? If X denotes the
waiting time in minutes until the second customer arrives, then X has a gamma distribution with
α = 2, θ = 1/λ = 2. Hence,

p (X > 5) =

∞∫
5

x2−1e−x/2

Γ (2) 22
dx =

∞∫
5

xe−x/2

4
dx =

1
4

[
(−2)xe−x/2 − 4e−x/2

]∞
5

=
7
2
e−5/2 = 0.287.

We could also have used equation with λ = 1/θ, because α is an integer

P (X > x) =
α−1∑
k=0

(x/θ)ke−x/θ

k!
.

Thus, with x=5, α=2, and θ = 2, this is equal to

P (X > x) =
2−1∑
k=0

(5/2)ke−5/2

k!
= e−5/2

(
1 +

5
2

)
=
(

7
2

)
e−5/2.
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2.3.1.2 Chi-Square Distribution

Let now consider the special case of the gamma distribution that plays an important role in statistics.

De�nition 12:
Let X have a gamma distribution with θ = 2 and α = r/2, where r is a positive integer. If the
p.d.f. of X is

f (x) =
1

Γ (r/2) 2r/2
xr/2−1e−x/2, 0 ≤ x <∞. (2.6)

We say that X has chi-square distribution with r degrees of freedom, which we abbreviate by
saying is χ2 (r).
The mean and the variance of this chi-square distributions are

µ = αθ =
(r

2

)
2 = r

and
σ2 = αθ2 =

(r
2

)
22 = 2r.

That is, the mean equals the number of degrees of freedom and the variance equals twice the number of
degrees of freedom.

In the fugure 2 (Figure 2.7) the graphs of chi-square p.d.f. for r=2,3,5, and 8 are given.

Figure 2.7: The p.d.f. of chi-square distribution for degrees of freedom r=2,3,5,8.



35

Note: the relationship between the mean µ = r, and the point at which the p.d.f. obtains its
maximum.

Because the chi-square distribution is so important in applications, tables have been prepared giving the
values of the distribution function for selected value of r and x,

F (x) =

x∫
0

1
Γ (r/2) 2r/2

wr/2−1e−w/2dw. (2.7)

Example 2.9
Let X have a chi-square distribution with r =5 degrees of freedom. Then, using tabularized values,

P (1.145 ≤ X ≤ 12.83) = F (12.83)− F (1.145) = 0.975− 0.050 = 0.925

and
P (X > 15.09) = 1− F (15.09) = 1− 0.99 = 0.01.

Example 2.10
If X is χ2 (7), two constants, a and b, such that P (a < X < b) = 0.95, are a=1.690 and b=16.01.

Other constants a and b can be found, this above are only restricted in choices by the limited
table.

Probabilities like that in Example 4 (Example 2.10) are so important in statistical applications that one
uses special symbols for a and b. Let α be a positive probability (that is usually less than 0.5) and let X have
a chi-square distribution with r degrees of freedom. Then χ2

α (r) is a number such that P
[
X ≥ χ2

α (r)
]

= α
That is, χ2

α (r) is the 100(1-α) percentile (or upper 100a percent point) of the chi-square distribution with
r degrees of freedom. Then the 100α percentile is the number χ2

1−α (r) such that P
[
X ≤ χ2

1−α (r)
]

= α.
This is, the probability to the right of χ2

1−α (r) is 1-α. SEE fugure 3 (Figure 2.8).

Example 2.11
Let X have a chi-square distribution with seven degrees of freedom. Then, using tabularized values,
χ2

0.05 (7) = 14.07 and χ2
0.95 (7) = 2.167. These are the points that are indicated on Figure 3.
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Figure 2.8: χ2
0.05 (7) = 14.07 and χ2

0.95 (7) = 2.167.

2.4 NORMAL DISTRIBUTION4

2.4.1 NORMAL DISTRIBUTION

The normal distribution is perhaps the most important distribution in statistical applications since many
measurements have (approximate) normal distributions. One explanation of this fact is the role of the normal
distribution in the Central Theorem.

De�nition 13:
1. The random variable X has a normal distribution if its p.d.f. is de�ned by

f (x) =
1

σ
√

2π
exp

[
− (x− µ)2

2σ2

]
,−∞ < x <∞, (2.8)

where µ and σ2 are parameters satisfying −∞ < µ <∞, 0 < σ <∞ , and also where exp [v] means
ev.
2. Brie�y, we say that X is N

(
µ, σ2

)
4This content is available online at <http://cnx.org/content/m13130/1.4/>.
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2.4.1.1 Proof of the p.d.f. properties

Clearly, f (x) > 0 . Let now evaluate the integral:

I =

∞∫
−∞

1
σ
√

2π
exp

[
− (x− µ)2

2σ2

]
dx,

showing that it is equal to 1. In the integral, change the variables of integration by letting z = (x− µ) /σ.
Then,

I =

∞∫
−∞

1√
2π
e−z

2/2dz,

since I > 0 , if I2 = 1 , then I = 1.
Now

I2 =
1

2π

 ∞∫
−∞

e−x
2/2dx

 ∞∫
−∞

e−y
2/2dy

 ,
or equivalently,

I2 =
1

2π

∞∫
−∞

∞∫
−∞

exp

(
−x

2 + y2

2

)
dxdy.

Letting x = rcosθ, y = rsinθ (i.e., using polar coordinates), we have

I2 =
1

2π

2π∫
0

∞∫
0

e−r
2/2rdrdθ =

1
2π

2π∫
0

dθ =
1

2π
2π = 1.

The mean and the variance of the normal distribution is as follows:

E (X) = µ

and
V ar (X) = µ2 + σ2 − µ2 = σ2.

That is, the parameters µ and σ2 in the p.d.f. are the mean and the variance of X.
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Normal Distribution

(a) (b)

Figure 2.9: p.d.f. and c.d.f graphs of the Normal Distribution (a) Probability Density Function (b)
Cumulative Distribution Function

Example 2.12
If the p.d.f. of X is

f (x) =
1√
32π

exp

[
− (x+ 7)2

32

]
,−∞ < x <∞,

then X is N (−7, 16)
That is, X has a normal distribution with a mean µ =-7, variance σ2 =16, and the moment

generating function

M (t) = exp
(
−7t+ 8t2

)
.

2.5 THE t DISTRIBUTION5

2.5.1 THE t DISTRIBUTION

In probability and statistics, the t-distribution or Student's distribution arises in the problem of esti-
mating the mean of a normally distributed population when the sample size is small, as well as when (as in
nearly all practical statistical work) the population standard deviation is unknown and has to be estimated
from the data.

Textbook problems treating the standard deviation as if it were known are of two kinds:

1. those in which the sample size is so large that one may treat a data-based estimate of the variance as
if it were certain,

2. those that illustrate mathematical reasoning, in which the problem of estimating the standard deviation
is temporarily ignored because that is not the point that the author or instructor is then explaining.

5This content is available online at <http://cnx.org/content/m13495/1.3/>.
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2.5.1.1 THE t DISTRIBUTION

De�nition 14: t Distribution
If Z is a random variable that is N (0, 1), if U is a random variable that is χ2 (r), and if Z and U
are independent, then

T =
Z√
U/r

=
X − µ
S/
√
n

(2.9)

has a t distribution with r degrees of freedom.

Where µ is the population mean, x is the sample mean and s is the estimator for population standard
deviation (i.e., the sample variance) de�ned by

s2 =
1

N − 1

N∑
i=1

(xi − x)

2

. (2.10)

If σ = s, t = z, the distribution becomes the normal distribution. As N increases, Student's t distribu-
tion approaches the normal distribution (Section 2.4.1: NORMAL DISTRIBUTION). It can be derived by
transforming student's z-distribution using

z ≡ x− µ
s

and then de�ning
t = z

√
n− 1.

The resulting probability and cumulative distribution functions are:

f (t) =
Γ [(r + 1) /2]

√
πrΓ (r/2) (1 + t2/r)(r+1)/2

, (2.11)

F (t) =
1
2

+
1
2

[
I

(
1;

1
2
r,

1
2

)
− I

(
r

r + t2
,

1
2
r,

1
2

)]
sgn (t) =

1
2
−
itB

(
− t

2

r ; 1
2 ,

1
2 (1− r)

)
Γ
(

1
2 (r + 1)

)
2
√
π|t|Γ

(
1
2r
) (2.12)

where,

• r = n− 1 is the number of degrees of freedom,
• −∞ < t <∞,
• Γ (z) is the gamma function,
• B (a, b) is the bets function,
• I (z; a, b) is the regularized beta function de�ned by

I (z; a, b) =
B (z; a, b)
B (a, b)

.

The e�ect of degree of freedom on the t distribution is illustrated in the four t distributions on the Figure 1
(Figure 2.10).
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Figure 2.10: p.d.f. of the t distribution for degrees of freedom r=3, r=6, r=∞.

In general, it is di�cult to evaluate the distribution function of T. Some values are usually given in the
tables. Also observe that the graph of the p.d.f. of T is symmetrical with respect to the vertical axis t =0
and is very similar to the graph of the p.d.f. of the standard normal distribution N (0, 1). However the tails
of the t distribution are heavier that those of a normal one; that is, there is more extreme probability in the
t distribution than in the standardized normal one. Because of the symmetry of the t distribution about t
=0, the mean (if it exists) must be equal to zero. That is, it can be shown that E (T ) = 0 when r ≥ 2. When
r=1 the t distribution is the Cauchy distribution, and thus both the variance and mean do not exist.



Chapter 3

Estimation

3.1 Estimation1

3.1.1 ESTIMATION

Once a model is speci�ed with its parameters and data have been collected, one is in a position to evaluate
the model's goodness of �t, that is, how well the model �ts the observed pattern of data. Finding parameter
values of a model that best �ts the data � a procedure called parameter estimation, which assesses
goodness of �t.

There are two generally accepted methods of parameter estimation. They are least squares estimation
(LSE) and maximum likelihood estimation (MLE). The former is well known as linear regression, the
sum of squares error, and the root means squared deviation is tied to the method. On the other hand,
MLE is not widely recognized among modelers in psychology, though it is, by far, the most commonly used
method of parameter estimation in the statistics community. LSE might be useful for obtaining a descriptive
measure for the purpose of summarizing observed data, but MLE is more suitable for statistical inference
such as model comparison. LSE has no basis for constructing con�dence intervals or testing hypotheses
whereas both are naturally built into MLE.

3.1.1.1 Properties of Estimators

UNBIASED AND BIASED ESTIMATORS
Let consider random variables for which the functional form of the p.d.f. is know, but the distribution

depends on an unknown parameter θ , that may have any value in a set θ , which is called the parameter
space. In estimation the random sample from the distribution is taken to elicit some information about
the unknown parameter θ. The experiment is repeated n independent times, the sample X1, X2, ..., Xn is
observed and one try to guess the value of θ using the observations x1, x2, ...xn.

The function of X1, X2, ..., Xn used to guess θ is called an estimator of θ . We want it to be such
that the computed estimate u (x1, x2, ...xn) is usually close to θ. Let Y = u (x1, x2, ...xn) be an estimator of
θ. If Y to be a good estimator of θ , a very desirable property is that it means be equal to θ , namely
E (Y ) = θ .

De�nition 15:
If E [u (x1, x2, ..., xn)] = θ is called an unbiased estimator of θ. Otherwise, it is said to be
biased.

It is required not only that an estimator has expectation equal to θ, but also the variance of the estimator
should be as small as possible. If there are two unbiased estimators of θ, it could be probably possible to
choose the one with the smaller variance. In general, with a random sample X1, X2, ..., Xn of a �xed sample

1This content is available online at <http://cnx.org/content/m13524/1.2/>.
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size n, a statistician might like to �nd the estimator Y = u (X1, X2, ..., Xn) of an unknown parameter θ
which minimizes the mean (expected) value of the square error (di�erence) Y − θ that is, minimizes

E
[
(Y − θ)2

]
= E{[u (X1, X2, ..., Xn)− θ]2}.

The statistic Y that minimizes E
[
(Y − θ)2

]
is the one with minimum mean square error. If we restrict

our attention to unbiased estimators only, then

V ar (Y ) = E
[
(Y − θ)2

]
,

and the unbiased statistics Y that minimizes this expression is said to be the unbiased minimum variance
estimator of θ .

3.1.1.2 Method of Moments

One of the oldest procedures for estimating parameters is the method of moments. Another method for
�nding an estimator of an unknown parameter is called the method of maximum likelihood. In general,
in the method of moments, if there are k parameters that have to be estimated, the �rst k sample moments
are set equal to the �rst k population moments that are given in terms of the unknown parameters.

Example 3.1
Let the distribution of X be N

(
µ, σ2

)
. Then E (X) = µ and E

(
X2
)

= σ2 + µ2. Given a random
sample of size n, the �rst two moments are given by

m1 =
1
n

n∑
i=1

xi

and

m2 =
1
n

n∑
i=1

xi.

We set m1 = E (X) and m2 = E
(
X2
)
and solve for µ and σ2,

1
n

n∑
i=1

xi = µ

and
1
n

n∑
i=1

xi = σ2 + µ2.

The �rst equation yields x as the estimate of µ . Replacing µ2 with x2 in the second equation
and solving for σ2 ,

we obtain
1
n

n∑
i=1

xi − x2 = v

for the solution of σ2 .

Thus the method of moment estimators for µ and σ2 are µ̃ = X and σ̃2 = V. Of course, µ̃ = X is unbiased
whereas σ̃2 = V. is biased.

At this stage arises the question, which of two di�erent estimators θ̂ and θ̃, for a parameter θ one should
use. Most statistician select he one that has the smallest mean square error, for example,

E

[(
θ̂ − θ

)2
]
< E

[(
θ̃ − θ

)2
]
,
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then θ̂ seems to be preferred. This means that if E
(
θ̂
)

= E
(
θ̃
)

= θ, then one would select the one with

the smallest variance.
Next, other questions should be considered. Namely, given an estimate for a parameter, how accurate is

the estimate? How con�dent one is about the closeness of the estimate to the unknown parameter?

see: CONFIDENCE INTERVALS I (Section 3.2.1: CONFIDENCE INTERVALS I) and CONFI-
DENCE INTERVALS II (Section 3.3.1: CONFIDENCE INTERVALS II)

3.2 CONFIDENCE INTERVALS I2

3.2.1 CONFIDENCE INTERVALS I

De�nition 16:
Given a random sample X1, X2, ..., Xn from a normal distribution N

(
µ, σ2

)
, consider the closeness

of X, the unbiased estimator of µ, to the unknown µ. To do this, the error structure (distribution)
of X, namely that X is N

(
µ, σ2/n

)
, is used in order to construct what is called a con�dence

interval for the unknown parameter µ, when the variance σ2 is known.

For the probability 1− α , it is possible to �nd a number zα/2, such that

P

(
−zα/2 ≤

X − µ
σ/
√
n
≤ zα/2

)
= 1− α.

For example, if 1− α = 0.95, then zα/2 = z0.025 = 1.96 and if 1− α = 0.90, then zα/2 = z0.05 = 1.645.
Recalling that σ > 0, the following inequalities are equivalent :

−zα/2 ≤
X − µ
σ/
√
n
≤ zα/2

and

−zα/2
(
σ√
n

)
≤ X − µ ≤ zα/2

(
σ√
n

)
,

−X − zα/2
(
σ√
n

)
≤ −µ ≤ −X + zα/2

(
σ√
n

)
,

X + zα/2

(
σ√
n

)
≥ µ ≥ X − zα/2

(
σ√
n

)
.

Thus, since the probability of the �rst of these is 1-1− α, the probability of the last must also be 1− α,
because the latter is true if and only if the former is true. That is,

P

[
X − zα/2

(
σ√
n

)
≤ µ ≤ −X + zα/2

(
σ√
n

)]
= 1− α.

So the probability that the random interval[
X − zα/2

(
σ√
n

)
, X + zα/2

(
σ√
n

)]
includes the unknown mean µ is 1− α .

2This content is available online at <http://cnx.org/content/m13494/1.3/>.
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De�nition 17:
1. Once the sample is observed and the sample mean computed equal to x , the interval

x− zα/2
(
σ/
√
n
)
, x+ zα/2

(
σ/
√
n
)

is a known interval. Since the probability that the random interval covers µ before the sample is
drawn is equal to 1 − α, call the computed interval, x ± zα/2 (σ/

√
n)(for brevity), a 100 (1− α) %

con�dence interval for the unknown mean µ.
2. The number 100 (1− α) %, or equivalently, 1− α, is called the con�dence coe�cient.
For illustration,

x± 1.96
(
σ/
√
n
)

is a 95% con�dence interval for µ.
It can be seen that the con�dence interval for µ is centered at the point estimate x and is completed by

subtracting and adding the quantity zα/2 (σ/
√
n).

Note that: as n increases, zα/2 (σ/
√
n) decreases, resulting n a shorter con�dence interval with

the same con�dence coe�cient 1− α

A shorter con�dence interval indicates that there is more reliance in x as an estimate of µ. For a �xed sample
size n, the length of the con�dence interval can also be shortened by decreasing the con�dence coe�cient
1− α. But if this is done, shorter con�dence is achieved by losing some con�dence.

Example 3.2
Let x be the observed sample mean of 16 items of a random sample from the normal distribution
N
(
µ, σ2

)
. A 90% con�dence interval for the unknown mean µ is[

x− 1.645

√
23.04

16
, x+ 1.645

√
23.04

16

]
.

For a particular sample this interval either does or does not contain the mean µ. However, if many
such intervals were calculated, it should be true that about 90% of them contain the mean µ.

If one cannot assume that the distribution from which the sample arose is normal, one can still obtain
an approximate con�dence interval for µ . By the Central Limit Theorem the ratio

(
X − µ

)
/ (σ/

√
n)

has, provided that n is large enough, the approximate normal distribution N (0, 1) when the underlying
distribution is not normal. In this case

P

(
−zα/2 ≤

X − µ
σ/
√
n
≤ zα/2

)
≈ 1− α,

and [
x− zα/2

(
σ√
n

)
, x+ zα/2

(
σ√
n

)]
is an approximate 100 (1− α) % con�dence interval for µ. The closeness of the approximate probability
1− α to the exact probability depends on both the underlying distribution and the sample size. When the
underlying distribution is unimodal (has only one mode) and continuous, the approximation is usually quite
good for even small n, such as n = 5. As the underlying distribution becomes less normal (i.e., badly skewed
or discrete), a larger sample size might be required to keep reasonably accurate approximation. But, in all
cases, an n of at least 30 is usually quite adequate.

SEE ALSO: Con�dence Intervals II
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3.3 CONFIDENCE INTERVALS II3

3.3.1 CONFIDENCE INTERVALS II

3.3.1.1 Con�dence Intervals for Means

In the preceding considerations (Con�dence Intervals I (Section 3.2.1: CONFIDENCE INTERVALS I)),
the con�dence interval for the mean µ of a normal distribution was found, assuming that the value of the
standard deviation σ is known. However, in most applications, the value of the standard deviation σ is
rather unknown, although in some cases one might have a very good idea about its value.

Suppose that the underlying distribution is normal and that σ2 is unknown. It is shown that given
random sample X1, X2, ..., Xn from a normal distribution, the statistic

T =
X − µ
S/
√
n

has a t distribution with r = n − 1 degrees of freedom, where S2 is the usual unbiased estimator of σ2,
(see, t distribution (Section 2.5.1: THE t DISTRIBUTION)).

Select tα/2 (n− 1) so that

P
[
T ≥ tα/2 (n− 1)

]
= α/2.

Then

1− α = P
[
−tα/2 (n− 1) ≤ X−µ

S/
√
n
≤ tα/2 (n− 1)

]
= P

[
−tα/2 (n− 1) S√

n
≤ X − µ ≤ tα/2 (n− 1) S√

n

]
= P

[
−X − tα/2 (n− 1) S√

n
≤ −µ ≤ −X + tα/2 (n− 1) S√

n

]
= P

[
X − tα/2 (n− 1) S√

n
≤ −µ ≤ X + tα/2 (n− 1) S√

n

]
.

Thus the observations of a random sample provide a x and s2 and x− tα/2 (n− 1) s√
n
, x+ tα/2 (n− 1) s√

n

is a 100 (1− α) % interval for µ.

Example 3.3
Let X equals the amount of butterfat in pound produced by a typical cow during a 305-day milk
production period between her �rst and second claves. Assume the distribution of X is N

(
µ, σ2

)
.

To estimate µ a farmer measures the butterfat production for n-20 cows yielding the following data:

481 537 513 583 453 510 570

500 487 555 618 327 350 643

499 421 505 637 599 392 -

For these data, x = 507.50 and s = 89.75. Thus a point estimate of µ is x = 507.50. Since

t0.05 (19) = 1.729 , a 90% con�dence interval for µ is 507.50±1.729
(

89.75√
20

)
, or equivalently, [472.80,

542.20].

Let T have a t distribution with n-1 degrees of freedom. Then, tα/2 (n− 1) > zα/2. Consequently, the
interval x ± zα/2σ/

√
n is expected to be shorter than the interval x ± tα/2 (n− 1) s/

√
n. After all, there

gives more information, namely the value of σ, in construction the �rst interval. However, the length of
the second interval is very much dependent on the value of s. If the observed s is smaller than σ, a shorter
con�dence interval could result by the second scheme. But on the average, x ± zα/2σ/

√
nis the shorter of

the two con�dence intervals.

3This content is available online at <http://cnx.org/content/m13496/1.4/>.
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If it is not possible to assume that the underlying distribution is normal but µ and σ are both unknown,
approximate con�dence intervals for µ can still be constructed using

T =
X − µ
S/
√
n
,

which now only has an approximate t distribution.
Generally, this approximation is quite good for many normal distributions, in particular, if the underlying

distribution is symmetric, unimodal, and of the continuous type. However, if the distribution is highly
skewed, there is a great danger using this approximation. In such a situation, it would be safer to use
certain nonparametric method for �nding a con�dence interval for the median of the distribution.

3.3.1.3 Con�dence Interval for Variances

The con�dence interval for the variance σ2 is based on the sample variance

S2 =
1

n− 1

n∑
i=1

(
Xi −X

)2
.

In order to �nd a con�dence interval for σ2, it is used that the distribution of (n− 1)S2/σ2 is χ2 (n− 1).
The constants a and b should selected from tabularized Chi Squared Distribution (Section 2.3.1.2: Chi-Square
Distribution) with n-1 degrees of freedom such that

P

(
a ≤ (n− 1)S2

σ2
≤ b
)

= 1− α.

That is select a and b so that the probabilities in two tails are equal:

a = χ2
1−α/2 (n− 1)

and
b = χ2

α/2 (n− 1) .

Then, solving the inequalities, we have

1− α = P

(
a

(n− 1)S2
≤ 1
σ2
≤ b

(n− 1)S2

)
= P

(
(n− 1)S2

b
≤ σ2 ≤ (n− 1)S2

a

)
.

Thus the probability that the random interval

[(n-1)S
2
/b, (n-1)S

2
/a]

contains the unknown σ2 is 1-α. Once the values of X1, X2, ..., Xn are observed to be x1, x2, ..., xn and s2

computed, then the interval
[(n-1)S

2
/b, (n-1)S

2
/a]

is a 100 (1− α) % con�dence interval for σ2.
It follows that [√

(n− 1) /bs,
√

(n− 1) /as
]

is a 100 (1− α) % con�dence interval for σ, the standard deviation.

Example 3.4
Assume that the time in days required for maturation of seeds of a species of a �owering plant
found in Mexico is N

(
µ, σ2

)
. A random sample of n=13 seeds, both parents having narrow leaves,

yielded x=18.97 days and 12s2 =
∑13
i=1 (x − x)2 = 128.41.
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A con�dence interval for σ2 is
[
128.41
21.03 ,

128.41
5.226

]
= [6.11, 24.57], because 5.226 = χ2

0.95 (12) and
21.03 = χ2

0.055 (12), what can be read from the tabularized Chi Squared Distribution. The corre-
sponding 90% con�dence interval for σ is

[√
6.11,

√
24.57

]
= [2.47, 4.96] .

Although a and b are generally selected so that the probabilities in the two tails are equal, the resulting
100 (1− α) % con�dence interval is not the shortest that can be formed using the available data. The tables
and appendixes gives solutions for a and b that yield con�dence interval of minimum length for the standard
deviation.

3.4 SAMPLE SIZE4

3.4.1 Size Sample

Very frequently asked question in statistical consulting is, how large should the sample size be to
estimate a mean?

The answer will depend on the variation associated with the random variable under observation. The
statistician could correctly respond, only one item is needed, provided that the standard deviation of the
distribution is zero. That is, if σ is equal zero, then the value of that one item would necessarily equal the
unknown mean of the distribution. This is the extreme case and one that is not met in practice. However,
the smaller the variance, the smaller the sample size needed to achieve a given degree of accuracy.

Example 3.5
A mathematics department wishes to evaluate a new method of teaching calculus that does math-
ematics using a computer. At the end of the course, the evaluation will be made on the basis of
scores of the participating students on a standard test. Because there is an interest in estimating
the mean score µ, for students taking calculus using computer so there is a desire to determine
the number of students, n, who are to be selected at random from a larger group. So, let �nd
the sample size n such that we are fairly con�dent that x ± 1 contains the unknown test mean µ,
from past experience it is believed that the standard deviation associated with this type of test
is 15. Accordingly, using the fact that the sample mean of the test scores, X , is approximately
N
(
µ, σ2/n

)
, it is seen that the interval given by x±1.96 (15/

√
n) will serve as an approximate 95%

con�dence interval for µ.

That is, 1.96
(

15√
n

)
= 1 or equivalently

√
n = 29.4 and thus n ≈ 864.36 or n=865 because n

must be an integer. It is quite likely that it had not been anticipated that as many as 865 students
would be needed in this study. If that is the case, the statistician must discuss with those involved
in the experiment whether or not the accuracy and the con�dence level could be relaxed some. For
illustration, rather than requiring x± 1 to be a 95% con�dence interval for µ, possibly x± 2 would

be satisfactory for 80% one. If this modi�cation is acceptable, we now have 1.282
(

15√
n

)
= 2 or

equivalently,
√
n = 9.615 and thus n ≈ 92.4. Since n must be an integer = 93 is used in practice.

Most likely, the person involved in this project would �nd this a more reasonable sample size. Of course,
any sample size greater than 93 could be used. Then either the length of the con�dence interval could be
decreased from that of x± 2 or the con�dence coe�cient could be increased from 80% or a combination of
both. Also, since there might be some question of whether the standard deviation σ actually equals 15, the
sample standard deviations would no doubt be used in the construction of the interval.

For example, suppose that the sample characteristics observed are

n = 145, x = 77.2, s = 13.2;

then, x± 1.282s√
n

or 77.2± 1.41 provides an approximate 80% con�dence interval for µ.

4This content is available online at <http://cnx.org/content/m13531/1.2/>.
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In general, if we want the 100 (1− α) % con�dence interval for µ, x± zα/2 (σ/
√
n), to be no longer than

that given by x± ε, the sample size n is the solution of ε = zα/2σ√
n
, where Φ

(
zα/2

)
= 1− α

2 .

That is,

n =
z2
α/2σ

2

ε2
,

where it is assumed that σ2 is known.
Sometimes

ε = zα/2σ/
√
n

is called the maximum error of the estimate. If the experimenter has no ideas about the value of σ2,
it may be necessary to �rst take a preliminary sample to estimate σ2.

The type of statistic we see most often in newspaper and magazines is an estimate of a proportion p. We
might, for example, want to know the percentage of the labor force that is unemployed or the percentage
of voters favoring a certain candidate. Sometimes extremely important decisions are made on the basis of
these estimates. If this is the case, we would most certainly desire short con�dence intervals for p with large
con�dence coe�cients. We recognize that these conditions will require a large sample size. On the other
hand, if the fraction p being estimated is not too important, an estimate associated with a longer con�dence
interval with a smaller con�dence coe�cients is satisfactory; and thus a smaller sample size can be used.

In general, to �nd the required sample size to estimate p, recall that the point estimate of p is

p̂ = zα/2

√
p̂ (1− p̂)

n
.

Suppose we want an estimate of p that is within ε of the unknown p with 100 (1− α) % con�dence where
ε = zα/2

√
p̂ (1− p̂) /n is the maximum error of the point estimate p̂ = y/n. Since p̂ is unknown before

the experiment is run, we cannot use the value of p̂ in our determination of n. However, if it is known that
p is about equal to p∗, the necessary sample size n is the solution of

ε =
zα/2

√
p∗ (1− p∗)
√
n

.

That is,

n =
z2
α/2p

∗ (1− p∗)
ε2

.

3.5 Maximum Likelihood Estimation (MLE)5

3.5.1 MAXIMUM LIKELIHOOD ESTIMATION (MLE)

3.5.1.1 Likelihood function

From a statistical standpoint, the data vector x = (x1, x2, ..., xn) as the outcome of an experiment is a
random sample from an unknown population. The goal of data analysis is to identify the population
that is most likely to have generated the sample. In statistics, each population is identi�ed by a
corresponding probability distribution. Associated with each probability distribution is a unique value of
the model's parameter. As the parameter changes in value, di�erent probability distributions are generated.
Formally, a model is de�ned as the family of probability distributions indexed by the model's parameters.

Let denote the probability distribution function (PDF) by f (x|θ) that speci�es the probability of ob-
serving data y given the parameter w. The parameter vector θ = (θ1, θ2, ..., θk) is a vector de�ned on a

5This content is available online at <http://cnx.org/content/m13501/1.3/>.



49

multi-dimensional parameter space. If individual observations, xi's are statistically independent of one an-
other, then according to the theory of probability, the PDF for the data x = (x1, x2, ..., xn) can be expressed
as a multiplication of PDFs for individual observations,

f (x, θ) = f (x1, θ) f (x2, θ) · · · f (xn, θ) ,

L (θ) =
n∏
i=1

f (xi|θ) .

To illustrate the idea of a PDF, consider the simplest case with one observation and one parameter,
that is, n = k = 1. Suppose that the data x represents the number of successes in a sequence of 10
independent binary trials (e.g., coin tossing experiment) and that the probability of a success on any one
trial, represented by the parameter, θ is 0.2. The PDF in this case is then given by

f (x|θ = 0.2) =
10!

x! (10− x)!
(0.2)x(0.8)10−x, (x = 0.1, ..., 10) ,

which is known as the binomial probability distribution. The shape of this PDF is shown in the top panel
of Figure 1 (Figure 3.1). If the parameter value is changed to say w = 0.7, a new PDF is obtained as

f (x|θ = 0.7) =
10!

x! (10− x)!
(0.7)x(0.3)10−x, (x = 0.1, ..., 10) ;

whose shape is shown in the bottom panel of Figure 1 (Figure 3.1). The following is the general
expression of the binomial PDF for arbitrary values of θ and n:

f (x|θ) =
n!

θ! (n− x)!
θx(1− θ)n−x, 0 ≤ θ ≤ 1, x = 0.1, ..., n;

which as a function of y speci�es the probability of data y for a given value of the parameter θ . The
collection of all such PDFs generated by varying parameter across its range (0 - 1 in this case) de�nes a
model.
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Figure 3.1: Binomial probability distributions of sample size n = 10 and probability parameter θ =
0.2 (top) and θ = 0.7 (bottom).

3.5.1.2 Maximum Likelihood Estimation

Once data have been collected and the likelihood function of a model given the data is determined, one is
in a position to make statistical inferences about the population, that is, the probability distribution that
underlies the data. Given that di�erent parameter values index di�erent probability distributions (Figure 1
(Figure 3.1)), we are interested in �nding the parameter value that corresponds to the desired PDF.

The principle of maximum likelihood estimation (MLE), originally developed by R. A. Fisher in
the 1920s, states that the desired probability distribution be the one that makes the observed data most
likely, which is obtained by seeking the value of the parameter vector that maximizes the likelihood function
(Section 3.5.1: MAXIMUM LIKELIHOOD ESTIMATION (MLE)) L (θ). The resulting parameter, which
is sought by searching the multidimensional parameter space, is called the MLE estimate, denoted by

θMLE = (θ1MLE, ..., θkMLE) .

Let p equal the probability of success in a sequence of Bernoulli trials or the proportion of the large
population with a certain characteristic. The method of moments estimate for p is relative frequency of
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success (having that characteristic). It will be shown below that the maximum likelihood estimate for p is
also the relative frequency of success.

Suppose that X is b (1, p) so that the p.d.f. of X is

f (x; p) = px(1− p)1−x, x = 0, 1, 0 ≤ p ≤ 1.

Sometimes is written
p ∈ Ω = [p : 0 ≤ p ≤ 1] ,

where Ω is used to represent parameter space, that is, the space of all possible values of the parameter. A
random sample X1, X2, ..., Xn is taken, and the problem is to �nd an estimator u (X1,X2, ...,Xn) such that
u (x1, x2, ..., xn) is a good point estimate of p, where x1, x2, ..., xn are the observed values of the random
sample. Now the probability that X1, X2, ..., Xn takes the particular values is

P (X1 = x1, ..., Xn = xn) =
n∏
i=1

pxi(1− p)1−xi = p
∑

xi(1− p)n−
P
xi ,

which is the joint p.d.f. of X1, X2, ..., Xn evaluated at the observed values. One reasonable way to proceed
towards �nding a good estimate of p is to regard this probability (or joint p.d.f.) as a function of p and �nd
the value of p that maximizes it. That is, �nd the p value most likely to have produced these sample values.
The joint p.d.f., when regarded as a function of p, is frequently called the likelihood function. Thus here
the likelihood function is:

L (p) = L (p;x1, x2, ..., xn) = f (x1; p) f (x2; p) · · · f (xn; p) = p
P
xi(1− p)n−

P
xi , 0 ≤ p ≤ 1.

To �nd the value of p that maximizes L (p) �rst take its derivative for 0 < p < 1 :

dL (p)
dp

=
(∑

xi

)
pn−

P
xi(1− p)n−

P
xi −

(
n−

∑
xi

)
p

P
xi(1− p)n−

P
xi−1

.

Setting this �rst derivative equal to zero gives

p
P
xi(1− p)n−

P
xi

[∑
xi
p
− n−

∑
xi

1− p

]
= 0.

Since 0 < p < 1, this equals zero when ∑
xi
p
− n−

∑
xi

1− p
= 0.

Or, equivalently,

p =
∑
xi
n

= x.

The corresponding statistics, namely
∑
Xi/n = X, is called the maximum likelihood estimator and

is denoted by p̂ ,that is,

p̂ =
1
n

n∑
i=1

Xi = X.

When �nding a maximum likelihood estimator, it is often easier to �nd the value of parameter that
minimizes the natural logarithm of the likelihood function rather than the value of the parameter that
minimizes the likelihood function itself. Because the natural logarithm function is an increasing function,
the solution will be the same. To see this, the example which was considered above gives for 0 < p < 1,

lnL (p) =

(
n∑
i=1

xi

)
lnp+

(
n−

n∑
i=1

xi

)
ln (1− p) .
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To �nd the maximum, set the �rst derivative equal to zero to obtain

d [lnL (p)]
dp

=

(
n∑
i=1

xi

)(
1
p

)
+

(
n−

n∑
i=1

xi

)(
−1

1− p

)
= 0,

which is the same as previous equation. Thus the solution is p = x and the maximum likelihood estimator
for p is p̂ = X.

Motivated by the preceding illustration, the formal de�nition of maximum likelihood estimators is pre-
sented. This de�nition is used in both the discrete and continuous cases. In many practical cases, these
estimators (and estimates) are unique. For many applications there is just one unknown parameter. In this
case the likelihood function is given by

L (θ) =
n∏
i=1

f (xi, θ) .

SEE ALSO: Maximum Likelihood Estimation - Examples (Section 3.6.1: MAXIMUM LIKELI-
HOOD ESTIMATION - EXAMPLES)

3.6 Maximum Likelihood Estimation - Examples6

3.6.1 MAXIMUM LIKELIHOOD ESTIMATION - EXAMPLES

3.6.1.1 EXPONENTIAL DISTRIBUTION

Let X1, X2, ..., Xn be a random sample from the exponential distribution with p.d.f.

f (x; θ) =
1
θ
e−x/θ, 0 < x <∞, θ ∈ Ω = {θ; 0 < θ <∞}.

The likelihood function is given by

L (θ) = L (θ;x1, x2, ..., xn) =
(

1
θ
e−x1/θ

)(
1
θ
e−x2/θ

)
· · ·
(

1
θ
e−xn/θ

)
=

1
θn
exp

(
−
∑n
i=1 xi
θ

)
, 0 < θ <∞.

The natural logarithm of L (θ) is

lnL (θ) = − (n) ln (θ)− 1
θ

n∑
i=1

xi, 0 < θ <∞.

Thus,
d [lnL (θ)]

dθ
=
−n
θ

+
∑n
i=1 xi
θ2

= 0.

The solution of this equation for θ is

θ =
1
n

n∑
i=1

xi = x.

Note that,
d [lnL (θ)]

dθ
=

1
θ

(
−n+

nx

θ

)
> 0, θ < x,

6This content is available online at <http://cnx.org/content/m13500/1.3/>.
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d [lnL (θ)]
dθ

=
1
θ

(
−n+

nx

θ

)
= 0, θ = x,

d [lnL (θ)]
dθ

=
1
θ

(
−n+

nx

θ

)
< 0, θ > x,

Hence, lnL (θ) does have a maximum at x, and thus the maximum likelihood estimator for θ is

θ̂ = X =
1
n

n∑
i=1

Xi.

This is both an unbiased estimator and the method of moments estimator for θ.

3.6.1.2 GEOMETRIC DISTRIBUTION

Let X1, X2, ..., Xn be a random sample from the geometric distribution with p.d.f.

f (x; p) = (1− p)x−1
p, x = 1, 2, 3, ....

The likelihood function is given by

L (p) = (1− p)x1−1
p(1− p)x2−1

p · · · (1− p)xn−1
p = pn(1− p)

P
xi−n, 0 ≤ p ≤ 1.

The natural logarithm of L (θ) is

lnL (p) = nlnp+

(
n∑
i=1

xi − n

)
ln (1− p) , 0 < p < 1.

Thus restricting p to 0 < p < 1 so as to be able to take the derivative, we have

dlnL (p)
dp

=
n

p
−
∑n
i=1 xi − n
1− p

= 0.

Solving for p, we obtain

p =
n∑n
i=1 xi

=
1
x
.

So the maximum likelihood estimator of p is

p̂ =
n∑n
i=1Xi

=
1
X

Again this estimator is the method of moments estimator, and it agrees with the intuition because, in n
observations of a geometric random variable, there are n successes in the

∑n
i=1 xi trials. Thus the estimate

of p is the number of successes divided by the total number of trials.

3.6.1.3 NORMAL DISTRIBUTION

Let X1, X2, ..., Xn be a random sample from N (θ1, θ2), where

Ω = ((θ1, θ2) : −∞ < θ1 <∞, 0 < θ2 <∞) .

That is, here let θ1 = µ and θ2 = σ2. Then

L (θ1, θ2) =
n∏
i−1

(
1√

2πθ2
exp

[
− (xi − θ1)2

2θ2

])
,
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or equivalently,

L (θ1, θ2) =
(

1√
2πθ2

)n
exp

[
−
−
∑n
i=1 (xi − θ1)2

2θ2

]
, (θ1, θ2) ∈ Ω.

The natural logarithm of the likelihood function is

lnL (θ1, θ2) = −n
2
ln (2πθ2)−

−
∑n
i=1 (xi − θ1)2

2θ2
.

The partial derivatives with respect to θ1 and θ2 are

∂ (lnL)
∂θ1

=
1
θ2

n∑
i=1

(xi − θ1)

and
∂ (lnL)
∂θ2

=
−n
2θ2

+
1

2θ22

n∑
i=1

(xi − θ1)2.

The equation ∂(lnL)
∂θ1

= 0 has the solution θ1 = x. Setting ∂(lnL)
∂θ2

= 0 and replacing θ1 by x yields

θ2 =
1
n

n∑
i=1

(xi − x)
2

.

By considering the usual condition on the second partial derivatives, these solutions do provide a maxi-
mum. Thus the maximum likelihood estimators

µ = θ1

and
σ2 = θ2

are
θ̂1 = X

and

θ̂2 =
1
n

n∑
i=1

(
Xi −X

)2
.

Where we compare the above example with the introductory one, we see that the method of moments
estimators and the maximum likelihood estimators for µ and σ2 are the same. But this is not always the case.
If they are not the same, which is better? Due to the fact that the maximum likelihood estimator of θ has
an approximate normal distribution with mean θ and a variance that is equal to a certain lower bound, thus
at least approximately, it is unbiased minimum variance estimator. Accordingly, most statisticians prefer
the maximum likelihood estimators than estimators found using the method of moments.

3.6.1.4 BINOMIAL DISTRIBUTION

Observations: k successes in n Bernoulli trials.

f (x) =
n!

x! (n− x)!
px(1− p)n−x

L (p) =
n∏
i=1

f (xi) =
n∏
i=1

(
n!

xi! (n− xi)!
pxi(1− p)n−xi

)
=

(
n∏
i=1

n!
xi! (n− xi)!

)
pxi(1− p)n−

Pn
i=1 xi



55

lnL (p) =
n∑
i=1

xilnp+

(
n−

n∑
i=1

xi

)
ln (1− p)

dlnL (p)
dp

=
1
p

n∑
i=1

xi −

(
n−

n∑
i=1

xi

)
1

1− p
= 0

(1− p̂)
∑n
i=1 xi − (n−

∑n
i=1 xi) p̂

p̂ (1− p̂)
= 0

n∑
i=1

xi − p̂
n∑
i=1

xi − np̂+
n∑
i=1

xip̂ = 0

p̂ =
∑n
i=1 xi
n

=
k

n

3.6.1.5 POISSON DISTRIBUTION

Observations: x1, x2, ..., xn,

f (x) =
λxe−λ

x!
, x = 0, 1, 2, ...

L (λ) =
n∏
i=1

(
λxie−λ

xi!

)
= e−λn

λ
∑n
i=1 xi∏n
i=1 xi

lnL (λ) = −λn+
n∑
i=1

xilnλ− ln

(
n∏
i=1

xi

)

dl

dλ
= −n+

n∑
i=1

xi
1
λ

−n+
n∑
i=1

xi
1
λ

= 0

λ̂ =
∑n
i=1 xi
n

3.7 ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELI-
HOOD ESTIMATORS7

3.7.1 ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTI-
MATORS

Let consider a distribution with p.d.f. f (x; θ) such that the parameter θ is not involved in the support of

the distribution. We want to be able to �nd the maximum likelihood estimator θ̂ by solving

∂ [lnL (θ)]
∂θ

= 0,

where here the partial derivative was used because L (θ) involves x1, x2, ..., xn.

7This content is available online at <http://cnx.org/content/m13527/1.2/>.
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That is,

∂
[
lnL

(
θ̂
)]

∂θ
= 0,

where now, with θ̂ in this expression,

L
(
θ̂
)

= f
(
X1; θ̂

)
f
(
X2; θ̂

)
· · · f

(
Xn; θ̂

)
.

We can approximate the left-hand member of this latter equation by a linear function found from the
�rst two terms of a Taylor's series expanded about θ , namely

∂ [lnL (θ)]
∂θ

+
(
θ̂ − θ

) ∂2 [lnL (θ)]
∂θ2

≈ 0,

when L (θ) = f (X1; θ) f (X2; θ) · · · f (Xn; θ) .
Obviously, this approximation is good enough only if θ̂ is close to θ, and an adequate mathematical proof

involves those conditions. But a heuristic argument can be made by solving for θ̂ − θ to obtain

θ̂ − θ =
∂[lnL(θ)]

∂θ

−∂
2[lnL(θ)]
∂θ2

(3.1)

Recall that
lnL (θ) = lnf (X1; θ) + lnf (X2; θ) + · · ·+ lnf (Xn; θ)

and

∂lnL (θ)
∂θ

=
n∑
i=1

∂ [lnf (Xi; θ)]
∂θ

; (3.2)

The expression (2) is the sum of the n independent and identically distributed random variables

Yi =
∂ [lnf (Xi; θ)]

∂θ
, i = 1, 2, ..., n.

and thus the Central Limit Theorem has an approximate normal distribution with mean (in the continuous
case) equal to

∞∫
−∞

∂[lnf(xi;θ)]
∂θ f (x; θ) dx =

∞∫
−∞

∂[f(xi;θ)]
∂θ

f(xi;θ)
f(xi;θ)

dx =
∞∫
−∞

∂[f(xi;θ)]
∂θ dx

= ∂
d∂

[
∞∫
−∞

f (xi; θ) dx

]
= ∂

d∂ [1] = 0.
(3.3)

Clearly, the mathematical condition is needed that it is permissible to interchange the operations of inte-
gration and di�erentiation in those last steps. Of course, the integral of f (xi; θ) is equal to one because it
is a p.d.f.

Since we know that the mean of each Y is

∞∫
−∞

∂ [lnf (xi; θ)]
∂θ

f (x; θ) dx = 0

let us take derivatives of each member of this equation with respect to θ obtaining

∞∫
−∞

{∂
2 [lnf (xi; θ)]

∂θ2
f (x; θ) +

∂ [lnf (xi; θ)]
∂θ

∂ [f (xi; θ)]
∂θ

}dx = 0.
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However,
∂ [f (xi; θ)]

∂θ
=
∂ [lnf (xi; θ)]

∂θ
f (x; θ)

so
∞∫
−∞

{∂ [lnf (xi; θ)]
∂θ

}

2

f (x; θ) dx = −
∞∫
−∞

∂2 [lnf (xi; θ)]
∂θ2

f (xi; θ) dx.

Since E (Y ) = 0, this last expression provides the variance of Y = ∂ [lnf (X; θ)] /d∂. Then the variance
of expression (2) is n times this value, namely

−nE{∂
2 [lnf (xi; θ)]

∂θ2
}.

Let us rewrite (1) (3.1) as

√
n
(
θ̂ − θ

)
1−

√
−E{∂2 [lnf (X; θ)] /∂θ2}

=

∂[lnL(θ)]/∂θ√
−E{∂2[lnf(X;θ)]/∂θ2}

− 1
n
∂2[lnL(θ)]

∂θ2

E{−∂2[lnf(X;θ)]/∂θ2}

(3.4)

The numerator of (4) has an approximate N (0, 1) distribution; and those unstated mathematical condition

require, in some sense for − 1
n
∂2[lnL(θ)]

∂θ2 to converge to E
[
−∂2 [lnf (X; θ)] /∂θ2

]
. Accordingly, the ratios given

in equation (4) must be approximately N (0, 1) . That is, θ̂ has an approximate normal distribution with
mean θ and standard deviation 1√

−nE{∂2[lnf(X;θ)]/∂θ2}
.

Example 3.6
With the underlying exponential p.d.f.

f (x; θ) =
1
θ
e−x/θ, 0 < x <∞, θ ∈ Ω = {θ; 0 < θ <∞}.

X is the maximum likelihood estimator. Since lnf (x; θ) = −lnθ− x
θ and ∂[lnf(x;θ)]

∂θ = − 1
θ + x

θ2 and
∂2[lnf(x;θ)]

∂θ = 1
θ2 −

2x
θ3 , we have

−E
[

1
θ2
− 2X

θ3

]
= −1

θ
+

2θ
θ3

=
1
θ2

because E (X) = θ. That is, X has an approximate distribution with mean θ and standard
deviation θ/

√
n. Thus the random interval X±1.96 (θ/

√
n) has an approximate probability of 0.95

for covering θ. Substituting the observed x for θ , as well as for X , we say that x ± 1.96x/
√
n is

an approximate 95% con�dence interval for θ.

Example 3.7
The maximum likelihood estimator for λ in

f (x;λ) =
λxe−λ

x!
, x = 0, 1, 2, ...; θ ∈ Ω = {θ : 0 < θ <∞}

is λ̂ = X Now lnf (x;λ) = xlnλ − λ − lnx! and ∂[lnf(x;λ)]
∂λ = x

λ − 1 and ∂2[lnf(x;λ)]
∂λ2 = x

λ2 . Thus

−E
(
− X
λ2

)
= λ

λ2 = 1
λ and λ̂ = X has an approximate normal distribution with mean λ and standard

deviation
√
λ/n. Finally x ± 1.645

√
x/n serves as an approximate 90% con�dence interval for λ.

With the data from example(. . .) x = 2.225 and hence this interval is from 1.887 to 2.563.

It is interesting that there is another theorem which is somewhat related to the preceding result in that the
variance of θ̂ serves as a lower bound for the variance of every unbiased estimator of θ . Thus we know that
if a certain unbiased estimator has a variance equal to that lower bound, we cannot �nd a better one and
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hence it is the best in the sense of being the unbiased minimum variance estimator. This is called the
Rao-Cramer Inequality.

Let X1, X2, ..., Xn be a random sample from a distribution with p.d.f.

f (x; θ) , θ ∈ Ω = {θ : c < θ < d},

where the support X does not depend upon θso that we can di�erentiate, with respect to θ, under integral
signs like that in the following integral:

∞∫
−∞

f (x; θ) dx = 1.

If Y = u (X1, X2, ..., Xn) is an unbiased estimator of θ, then

V ar (Y ) ≥ 1

n
∞∫
−∞
{[∂lnf (x; θ) /∂θ]}2f (x; θ) dx

=
−1

n
∞∫
−∞

[∂2lnf (x; θ) /∂θ2] f (x; θ) dx
.

Note that the two integrals in the respective denominators are the expectations

E{
[
∂lnf (X; θ)

∂θ

]2
}

and

E

[
∂2lnf (X; θ)

∂θ2

]
sometimes one is easier to compute that the other.

Note that above the lower bound of two distributions: exponential and Poisson was computed. Those
respective lower bounds were θ2n and λn. Since in each case, the variance of X equals the lower bound,
then X is the unbiased minimum variance estimator.

Example 3.8
The sample arises from a distribution with p.d.f.

f (x; θ) = θxθ−1, 0 < x < 1, θ ∈ Ω = {θ : 0 < θ <∞}.

We have

lnf (x; θ) = lnθ + (θ − 1) lnx,
∂lnf (x; θ)

∂θ
=

1
θ

+ lnx,

and
∂2lnf (x; θ)

∂θ2
= − 1

θ2
.

Since E
(
−1/θ2

)
= −1/θ2, the lower bound of the variance of every unbiased estimator of θ is

θ2/n. Moreover, the maximum likelihood estimator

θ̂ = −n/ln
n∏
i=1

Xi

has an approximate normal distribution with mean θ and variance θ2/n. Thus, in a limiting sense,

θ̂ is the unbiased minimum variance estimator of θ.

To measure the value of estimators; their variances are compared to the Rao-Cramer lower bound. The ratio
of the Rao-Cramer lower bound to the actual variance of any unbiased estimator is called the e�ciency of
that estimator. As estimator with e�ciency of 50% requires that 1/0.5=2 times as many sample observations
are needed to do as well in estimation as can be done with the unbiased minimum variance estimator (then
100% e�cient estimator).



Chapter 4

Tests of Statistical Hypotheses

4.1 TEST ABOUT PROPORTIONS1

4.1.1 TEST ABOUT PROPORTIONS

Tests of statistical hypotheses are a very important topic, let introduce it through an illustration.
Suppose a manufacturer of a certain printed circuit observes that about p=0.05 of the circuits fails.

An engineer and statistician working together suggest some changes that might improve the design of the
product. To test this new procedure, it was agreed that n=100 circuits would be produced using the proposed
method and the checked. Let Y equal the number of these 200 circuits that fail. Clearly, if the number of
failures, Y, is such that Y/200 is about to 0.05, then it seems that the new procedure has not resulted in
an improvement. On the other hand, If Y is small so that Y/200 is about 0.01 or 0.02, we might believe
that the new method is better than the old one. On the other hand, if Y/200 is 0.08 or 0.09, the proposed
method has perhaps caused a greater proportion of failures. What is needed is to establish a formal rule that
tells when to accept the new procedure as an improvement. For example, we could accept the new procedure
as an improvement if Y ≤ 5 of Y/n ≤ 0.025. We do note, however, that the probability of the failure could
still be about p=0.05 even with the new procedure, and yet we could observe 5 of fewer failures in n=200
trials.

That is, we would accept the new method as being an improvement when, in fact, it was not. This
decision is a mistake which we call a Type I error. On the other hand, the new procedure might actually
improve the product so that p is much smaller, say p=0.02, and yet we could observe y=7 failures so that
y/200=0.035. Thus we would not accept the new method as resulting in an improvement when in fact it
had. This decision would also be a mistake which we call a Type II error.

If it we believe these trials, using the new procedure, are independent and have about the same probability
of failure on each trial, then Y is binomial b (200, p). We wish to make a statistical inference about p using
the unbiased p̂ = Y/200. We could also construct a con�dence interval, say one that has 95% con�dence,
obtaining

p̂± 1.96

√
p̂ (1− p̂)

200
.

This inference is very appropriate and many statisticians simply do this. If the limits of this con�dence
interval contain 0.05, they would not say the new procedure is necessarily better, al least until more data
are taken. If, on the other hand, the upper limit of this con�dence interval is less than 0.05, then they fell
95% con�dent that the true p is now less than 0.05. Here, in this illustration, we are testing whether or not
the probability of failure has or has not decreased from 0.05 when the new manufacturing procedure is used.

The no change hypothesis, H0 : p = 0.05, is called the null hypothesis. Since H0 : p = 0.05 completely
speci�es the distribution it is called a simple hypothesis; thus H0 : p = 0.05 is a simple null hypothesis.

1This content is available online at <http://cnx.org/content/m13525/1.2/>.
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The research worker's hypothesis H1 : p < 0.05 is called the alternative hypothesis. Since H1 : p <
0.05 does not completely specify the distribution, it is a composite hypothesis because it is composed of
many simple hypotheses.

The rule of rejecting H0 and accepting H1 if Y ≤ 5, and otherwise accepting H0 is called a test of a
statistical hypothesis.

It is clearly seen that two types of errors can be recorded

• Type I error: Rejecting H0 and accepting H1, when H0 is true;
• Type II error: Accepting H0 when H1 is true, that is, when H0 is false.

Since, in the example above, we make a Type I error if Y ≤ 5 when in fact p=0.05. we can calculate the
probability of this error, which we denote by α and call the signi�cance level of the test. Under an
assumption, it is

α = P (Y ≤ 5; p = 0.05) =
5∑
y=0

 200

y

 (0.05)y(0.95)200−y.

.
Since n is rather large and p is small, these binomial probabilities can be approximated extremely well

by Poisson probabilities with λ = 200 (0.05) = 10. That is, from the Poisson table, the probability of the
Type I error is

α ≈
5∑
y=0

10ye−10

y!
= 0.067.

Thus, the approximate signi�cance level of this test is α = 0.067. This value is reasonably small. However,
what about the probability of Type II error in case p has been improved to 0.02, say? This error occurs if
Y > 5 when, in fact, p=0.02; hence its probability, denoted by β, is

β = P (Y > 5; p = 0.02) =
200∑
y=6

 200

y

 (0.02)y(0.98)200−y.

Again we use the Poisson approximation, here λ=200(0.02)=4, to obtain

β ≈ 1−
5∑
y=0

4ye−4

y!
= 1− 0.785 = 0.215.

The engineers and the statisticians who created this new procedure probably are not too pleased with
this answer. That is, they note that if their new procedure of manufacturing circuits has actually decreased
the probability of failure to 0.02 from 0.05 (a big improvement), there is still a good chance, 0.215, that
H0: p=0.05 is accepted and their improvement rejected. Thus, this test of H0: p=0.05 against H1: p=0.02 is
unsatisfactory. Without worrying more about the probability of the Type II error, here, above was presented
a frequently used procedure for testing H0: p=p0, where p

0
is some speci�ed probability of success. This

test is based upon the fact that the number of successes, Y, in n independent Bernoulli trials is such that
Y/n has an approximate normal distribution, N[p

0
, p

0
(1- p

0
)/n], provided H0: p=p0 is true and n is large.

Suppose the alternative hypothesis is H0: p>p0 ; that is, it has been hypothesized by a research worker
that something has been done to increase the probability of success. Consider the test of H0: p=p0 against
H1: p> p

0
that rejects H0 and accepts H1 if and only if

Z =
Y/n− p0√
p0 (1− p0) /n

≥ zα.

That is, if Y/n exceeds p
0
by standard deviations of Y/n, we reject H0 and accept the hypothesis

H1: p> p
0
. Since, under H0 Z is approximately N (0,1), the approximate probability of this occurring when
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H0: p=p0 is true is α. That is the signi�cance level of that test is approximately α. If the alternative is
H1: p< p

0
instead of H1: p> p

0
, then the appropriate α-level test is given by Z ≤ −zα. That is, if Y/n is

smaller than p
0
by standard deviations of Y/n, we accept H1: p< p

0
.

In general, without changing the sample size or the type of the test of the hypothesis, a decrease in α
causes an increase in β, and a decrease in β causes an increase in α. Both probabilities α and β of the two
types of errors can be decreased only by increasing the sample size or, in some way, constructing a better
test of the hypothesis.

4.1.1.1.1 EXAMPLE

If n=100 and we desire a test with signi�cance level α=0.05, then α = P
(
X ≥ c;µ = 60

)
= 0.05 means,

since X is N(µ,100/100=1),

P

(
X − 60

1
≥ c− 60

1
;µ = 60

)
= 0.05

and c− 60 = 1.645. Thus c=61.645. The power function is

K (µ) = P
(
X ≥ 61.645;µ

)
= P

(
X − µ

1
≥ 61.645− µ

1
;µ
)

= 1− Φ (61.645− µ) .

In particular, this means that β at µ=65 is

= 1−K (µ) = Φ (61.645− 65) = Φ (−3.355) ≈ 0;

so, with n=100, both α and β have decreased from their respective original values of 0.1587 and 0.0668 when
n=25. Rather than guess at the value of n, an ideal power function determines the sample size. Let us use a
critical region of the form x ≥ c. Further, suppose that we want α=0.025 and, when µ=65, β=0.05. Thus,
since X is N(µ,100/n),

0.025 = P
(
X ≥ c;µ = 60

)
= 1− Φ

(
c− 60
10/
√
n

)
and

0.05 = 1− P
(
X ≥ c;µ = 65

)
= Φ

(
c− 65
10/
√
n

)
.

That is, c−60
10/
√
n

= 1.96 and c−65
10/
√
n

= −1.645.
Solving these equations simultaneously for c and 10/

√
n, we obtain

c = 60 + 1.96
5

3.605
= 62.718;

10√
n

=
5

3.605
.

Thus,
√
n = 7.21 and n = 51.98. Since n must be an integer, we would use n=52 and obtain α=0.025

and β=0.05, approximately.
For a number of years there has been another value associated with a statistical test, and most statistical

computer programs automatically print this out; it is called the probability value or, for brevity, p-value.
The p-value associated with a test is the probability that we obtain the observed value of the test statistic
or a value that is more extreme in the direction of the alternative hypothesis, calculated when H0 is true.
Rather than select the critical region ahead of time, the p-value of a test can be reported and the reader
then makes a decision.

Say we are testing H0: µ=60 against H1: µ>60 with a sample mean X based on n=52 observations.
Suppose that we obtain the observed sample mean of x = 62.75. If we compute the probability of obtaining
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an x of that value of 62.75 or greater when µ=60, then we obtain the p-value associated with x = 62.75.
That is,

p− value = P
(
X ≥ 62.75;µ = 60

)
= P

(
X−60
10/
√

52
≥ 62.75−60

10/
√

52
;µ = 60

)
= 1− Φ

(
62.75−60
10/
√

52

)
= 1− Φ (1.983) = 0.0237.

If this p-value is small, we tend to reject the hypothesis H0: µ=60 . For example, rejection of H0: µ=60
if the p-value is less than or equal to 0.025 is exactly the same as rejection if x = 62.718.That is, x = 62.718
has a p-value of 0.025. To help keep the de�nition of p-value in mind, we note that it can be thought of
as that tail-end probability, under H0, of the distribution of the statistic, here X, beyond the observed
value of the statistic. See Figure 1 (Figure 4.1) for the p-value associated with x = 62.75.

Figure 4.1: The p-value associated with x = 62.75.

Example 4.1
Suppose that in the past, a golfer's scores have been (approximately) normally distributed with
mean µ=90 and σ2=9. After taking some lessons, the golfer has reason to believe that the mean µ
has decreased. (We assume that σ2 is still about 9.) To test the null hypothesis H0: µ=90 against
the alternative hypothesis H1: µ < 90 , the golfer plays 16 games, computing the sample mean x.If
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x is small, say x ≤ c, then H0 is rejected and H1 accepted; that is, it seems as if the mean µ has
actually decreased after the lessons. If c=88.5, then the power function of the test is

K (µ) = P
(
X ≤ 88.5;µ

)
= P

(
X − µ

3/4
≤ 88.5− µ

3/4
;µ
)

= Φ
(

88.5− µ
3/4

)
.

Because 9/16 is the variance of X. In particular,

α = K (90) = Φ (−2) = 1− 0.9772 = 0.0228.

If, in fact, the true mean is equal to µ=88 after the lessons, the power is K (88) = Φ (2/3) =
0.7475. If µ=87, then K (87) = Φ (2) = 0.9772. An observed sample mean of x = 88.25 has a

p− value = P
(
X ≤ 88.25;µ = 90

)
= Φ

(
88.25− 90

3/4

)
= Φ

(
−7

3

)
= 0.0098,

and this would lead to a rejection at α=0.0228 (or even α=0.01).

4.2 TESTS ABOUT ONE MEAN AND ONE VARIANCE2

4.2.1 TESTS ABOUT ONE MEAN AND ONE VARIANCE

In the previous paragraphs it was assumed that we were sampling from a normal distribution and the variance
was known. The null hypothesis was generally of the form H0: µ= µ0.

There are essentially tree possibilities for the alternative hypothesis, namely that µ has increased,

1. H1: µ > µ0; µ has decreased,
2. H1: µ < µ0; µ has changed, but it is not known if it has increased or decreased, which leads to a

two-sided alternative hypothesis
3. H1;µ 6= µ0.

To test H0;µ = µ0 against one of these tree alternative hypotheses, a random sample is taken from the
distribution, and an observed sample mean, x, that is close to µ0 supports H0. The closeness of x to µ0 is
measured in term of standard deviations of X, σ/

√
n which is sometimes called the standard error of the

mean. Thus the statistic could be de�ned by

Z =
X − µ0√
σ2/n

=
X − µ0

σ/
√
n
,

and the critical regions, at a signi�cance level α, for the tree respective alternative hypotheses would be:

1. z ≥ zα
2. z ≤ zα
3. |z| = zα/2

In terms of x these tree critical regions become

1. x ≥ µ0 + zασ/
√
n,

2. x ≤ µ0 − zασ/
√
n,

3. |x− µ0| ≥ zασ/
√
n

2This content is available online at <http://cnx.org/content/m13526/1.3/>.
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These tests and critical regions are summarized in TABLE 1 (TABLE 1, p. 64). The underlying assumption
is that the distribution is N

(
µ, σ2

)
and σ2 is known. Thus far we have assumed that the variance σ2 was

known. We now take a more realistic position and assume that the variance is unknown. Suppose our
null hypothesis is H0;µ = µ0 and the two-sided alternative hypothesis is H1;µ 6= µ0. If a random sample
X1, X2, ..., Xn is taken from a normal distribution N

(
µ, σ2

)
,let recall that a con�dence interval for µ was

based on

T =
X − µ√
S2/n

=
X − µ
S/
√
n
.

TABLE 1

H0

H1 Critical Region

µ = µ0 µ > µ0 z ≥ zα or x ≥ µ0 +
zασ/

√
n

µ = µ0 µ < µ0 z ≤ −zα or x ≤
µ0 − zασ/

√
n

µ = µ0 µ 6= µ0 |z| ≥ zα/2 or |x −
µ0| ≥ zα/2σ/

√
n

This suggests that T might be a good statistic to use for the test H0;µ = µ0 with µ replaced by
µ0. In addition, it is the natural statistic to use if we replace σ2/n by its unbiased estimator S2/n in(
X − µ0

)
/
√
σ2/n in a proper equation. If µ = µ0 we know that T has a t distribution with n-1 degrees of

freedom. Thus, with µ = µ0,

P
[
|T | ≥ tα/2 (n− 1)

]
= P

[
|X − µ0|
S/
√
n
≥ tα/2 (n− 1)

]
= α.

Accordingly, if x and s are the sample mean and the sample standard deviation, the rule that rejects
H0;µ = µ0 if and only if

|t| = |x− µ0|
s/
√
n
≥ tα/2 (n− 1) .

Provides the test of the hypothesis with signi�cance level α. It should be noted that this rule is equivalent
to rejecting H0;µ = µ0 if µ0 is not in the open 100 (1− α) % con�dence interval(

x− tα/2 (n− 1) s/
√
n, x+ tα/2 (n− 1) s/

√
n
)
.

Table 2 (TABLE 2, p. 64) summarizes tests of hypotheses for a single mean, along with the three possible
alternative hypotheses, when the underlying distribution is N

(
µ, σ2

)
, σ2 is unknown, t = (x− µ0) / (s/

√
n)

and n ≤ 31. If n>31, use table 1 (TABLE 1, p. 64) for approximate tests with σ replaced by s.

TABLE 2

H0

H1 Critical Region

µ = µ0 µ > µ0 t ≥ tα (n− 1)
or x ≥ µ0 +
tα (n− 1) s/

√
n

µ = µ0 µ < µ0 t ≤ −tα (n− 1)
or x ≤ µ0 −
tα (n− 1) s/

√
n

µ = µ0 µ 6= µ0 |t| ≥ tα/2 (n− 1)
or |x − µ0| ≥
tα/2 (n− 1) s/

√
n
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Example 4.2
Let X (in millimeters) equal the growth in 15 days of a tumor induced in a mouse. Assume that
the distribution of X is N

(
µ, σ2

)
. We shall test the null hypothesis H0 : µ = µ0 = 4.0 millimeters

against the two-sided alternative hypothesis is H1 : µ 6= 4.0. If we use n=9 observations and a
signi�cance level of α =0.10, the critical region is

|t| = |x− 4.0|
s/
√

9
≥ tα/2 (8) = t0.05 (8) = 1.860.

If we are given that n=9, x=4.3, and s=1.2, we see that

t =
4.3− 4.0
1.2/
√

9
=

0.3
0.4

= 0.75.

Thus |t| = |0.75| < 1.860 and we accept (do not reject) H0 : µ = 4.0 at the α=10% signi�cance
level. See Figure 1 (Figure 4.2).

Figure 4.2: Rejection region at the α = 10% signi�cance level.

REMARK: In discussing the test of a statistical hypothesis, the word accept might better be
replaced by do not reject. That is, in Example 1 (Example 4.2), x is close enough to 4.0 so that we
accept µ=4.0, we do not want that acceptance to imply that µ is actually equal to 4.0. We want
to say that the data do not deviate enough from µ=4.0 for us to reject that hypothesis; that is, we
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do not reject µ=4.0 with these observed data, With this understanding, one sometimes uses accept
and sometimes fail to reject or do not reject, the null hypothesis.

In this example the use of the t-statistic with a one-sided alternative hypothesis will be illustrated.
Example 4.3
In attempting to control the strength of the wastes discharged into a nearby river, a paper �rm
has taken a number of measures. Members of the �rm believe that they have reduced the oxygen-
consuming power of their wastes from a previous mean µ of 500. They plan to test H0 : µ = 500
against H1 : µ < 500, using readings taken on n=25 consecutive days. If these 25 values can be
treated as a random sample, then the critical region, for a signi�cance level of α=0.01, is

t =
x− 500
s/
√

25
≤ −t0.01 (24) = −2.492.

The observed values of the sample mean and sample standard deviation were x=308.8 and
s=115.15. Since

t =
308.8− 500
115.15/

√
25

= −8.30 < − 2.492,

we clearly reject the null hypothesis and accept H1 : µ < 500. It should be noted, however,
that although an improvement has been made, there still might exist the question of whether the
improvement is adequate. The 95% con�dence interval 308.8± 2.064 (115.15/5) or [261.27, 356.33]
for µ might the company answer that question.

4.3 TEST OF THE EQUALITY OF TWO INDEPENDENT NOR-
MAL DISTRIBUTIONS3

4.3.1 TEST OF THE EQUALITY OF TWO INDEPENDENT NORMAL DIS-
TRIBUTIONS

Let X and Y have independent normal distributions N
(
µx, σ

2
x

)
and N

(
µy, σ

2
y

)
, respectively. There are times

when we are interested in testing whether the distribution of X and Y are the same. So if the assumption
of normality is valid, we would be interested in testing whether the two variances are equal and whether the
two mean are equal.

Let �rst consider a test of the equality of the two means. When X and Y are independent and normally
distributed, we can test hypotheses about their means using the same t-statistic that was used previously.
Recall that the t-statistic used for constructing the con�dence interval assumed that the variances of X and
Y are equal. That is why we shall later consider a test for the equality of two variances.

Let start with an example and then let give a table that lists some hypotheses and critical regions.
Example 4.4
A botanist is interested in comparing the growth response of dwarf pea stems to two di�erent
levels of the hormone indoeacetic acid (IAA). Using 16-day-old pea plants, the botanist obtains
5-millimeter sections and �oats these sections with di�erent hormone concentrations to observe the
e�ect of the hormone on the growth of the pea stem.

Let X and Y denote, respectively, the independent growths that can be attributed to the
hormone during the �rst 26 hours after sectioning for (0.5) (10)−4

and (10)−4
levels of concentration

of IAA. The botanist would like to test the null hypothesis H0 : µx−µy = 0 against the alternative
hypothesis H1 : µx−µy < 0. If we can assume X and Y are independent and normally distributed
with common variance, respective random samples of size n and m give a test based on the statistic

3This content is available online at <http://cnx.org/content/m13532/1.2/>.
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T =
X − Y√

{
[
(n− 1)S2

x + (m− 1)S2
Y y

]
/ (n+m− 2)} (1/n+ 1/m)

=
X − Y

SP
√

1/n+ 1/m
,

where

SP =

√
(n− 1)S2

X + (m− 1)S2
Y

n+m− 2
.

T has a t distribution with r = n+m− 2 degrees of freedom when H0 is true and the variances
are (approximately) equal. The hypothesis Ho will be rejected in favor of H1 if the observed value
of T is less than −tα (n+m− 2).
Example 4.5
In the example 1 (Example 4.4), the botanist measured the growths of pea stem segments, in
millimeters, for n=11 observations of X given in the Table 1:

Table 1

0.8 1.8 1.0 0.1 0.9 1.7 1.0 1.4 0.9 1.2 0.5

and m=13 observations of Y given in the Table 2:

Table 2

1.0 0.8 1.6 2.6 1.3 1.1 2.4 1.8 2.5 1.4 1.9 2.0 1.2

For these data, x = 1.03, s2x = 0.24, y = 1.66, and s2y = 0.35. The critical region for testing
H0 : µx − µy = 0 against H1 : µx − µy < 0 is t ≤ −t0.05 (22) = −1.717. Since H0 is clearly rejected
at α=0.05 signi�cance level.

Notice that: an approximate p-value of this test is 0.005 because −t0.05 (22) = −2.819. Also,
the sample variances do not di�er too much; thus most statisticians would use this two sample
t-test.

4.4 BEST CRITICAL REGIONS4

4.4.1 BEST CRITICAL REGIONS

In this paragraph, let consider the properties a satisfactory test should posses.
De�nition 18:
1. Consider the test of the sample null hypothesis H0 : θ = θ0 against the simple alternative
hypothesis H1 : θ = θ1.
2. Let C be a critical region of size α; that is, α = P (C; θ0). Then C is a best critical region of
size α if, for every other critical region D of size α = P (D; θ0), we have that

P (C; θ1) ≥ P (D; θ1) .

4This content is available online at <http://cnx.org/content/m13528/1.2/>.



68 CHAPTER 4. TESTS OF STATISTICAL HYPOTHESES

That is, when H1 : θ = θ1 is true, the probability of rejecting H0 : θ = θ0 using the critical region C is
at least as great as the corresponding probability using any other critical region D of size α.

Thus a best critical region of size α is the critical region that has the greatest power among all critical
regions for a best critical region of size α. The Neyman-Pearson lemma gives su�cient conditions for a
best critical region of size α.

Theorem 4.1: Neyman-Pearson Lemma
Let X1, X2, ..., Xn be a random sample of size n from a distribution with p.d.f. f (x; θ), where θ0
and θ1 are two possible values of θ.

Denote the joint p.d.f. of X1, X2, ..., Xn by the likelihood function

L (θ) = L (θ;x1, x2, ..., xn) = f (x1; θ) f (x2; θ) · · · f (xn.; θ) .

If there exist a positive constant k and a subset C of the sample space such that

1. P [(X1, X2, ..., Xn) ∈ C; θ0] = α,

2. L(θ0)
L(θ1)

≤ k for (x1, x2, ..., xn) ∈ C,
3. L(θ0)

L(θ1)
≥ k for (x1, x2, ..., xn) ∈ C'.

Then C is a best critical region of size α for testing the simple null hypothesis H0 : θ = θ0
against the simple alternative hypothesis H1 : θ = θ1.

For a realistic application of the Neyman-Pearson lemma, consider the following, in which the test is
based on a random sample from a normal distribution.

Example 4.6
Let X1, X2, ..., Xn be a random sample from a normal distribution N (µ, 36). We shall �nd the
best critical region for testing the simple hypothesis H0 : µ = 50 against the simple alternative
hypothesis H1 : µ = 55. Using the ratio of the likelihood functions, namely L (50) /L (55), we shall
�nd those points in the sample space for which this ratio is less than or equal to some constant k.

That is, we shall solve the following inequality:

L(50)
L(55) =

(72π)−n/2exp[−( 1
72 ) Pn

1 (xi−50)2]
(72π)−n/2exp[−( 1

72 ) Pn
1 (xi−55)2]

= exp
[
−
(

1
72

) (
10
∑n

1 xi + n502 − n552
)]
≤ k.

If we take the natural logarithm of each member of the inequality, we �nd that

−10
n∑
1

xi − n502 + n552 ≤ (72) lnk.

Thus,

1
n

n∑
1

xi ≥ −
1

10n
[
n502 − n552 + (72) lnk

]
Or equivalently, x ≥ c, where c = − 1

10n

[
n502 − n552 + (72) lnk

]
.

Thus L (50) /L (55) ≤ k is equivalent to x ≥ c.
A best critical region is, according to the Neyman-Pearson lemma,

C = {(x1, x2, ..., xn) : x ≥ c},

where c is selected so that the size of the critical region is α. Say n=16 and c=53. Since X is
N (50, 36/16) under H0 we have
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α = P
(
X ≥ 53;µ = 50

)
= P

[
X − 50

6/4
≥ 3

6/4
;µ = 50

]
= 1− Φ (2) = 0.0228.

The example 1 illustrates what is often true, namely, that the inequality

L (θ0)
L (θ1)

≤ k

can be expressed in terms of a function u (x1, x2, ..., xn) say,

u (x1, x2, ..., xn) ≤ c1
or

u (x1, x2, ..., xn) ≥ c2,

where c1 and c2 is selected so that the size of the critical region is α . Thus the test can be based on the
statistic u (X1, ..., Xn). Also, for illustration, if we want α to be a given value, say 0.05, we would then
choose our c1 and c2. In example1, with α=0.05, we want

0.05 = P
(
X ≥ c;µ = 50

)
= P

(
X − 50

6/4
≥ c− 50

6/4
;µ = 50

)
= 1− Φ

(
c− 50

6/4

)
.

Hence it must be true that (c− 50) / (3/2) = 1.645, or equivalently, c = 50 + 3
2 (1.645) ≈ 52.47.

Example 4.7
LetX1, X2, ..., Xn denote a random sample of size n from a Poisson distribution with mean λ. A
best critical region for testing H0 : λ = 2 against H1 : λ = 5 is given by

L (2)
L (5)

=
2

P
xie−2n

x1!x2! · · · xn!
x1!x2! · · · xn!

5
P
xie−5n

≤ k.

The inequality is equivalent to
(

2
5

)P
xi
e3n ≤ k and (

∑
xi) ln

(
2
5

)
+ 3n ≤ lnk.

Since ln (2/5) < 0, this is the same as

n∑
i=1

xi ≥
lnk − 3n
ln (2/5)

= c.

If n=4 and c=13, then

α = P

(
4∑
i=1

Xi ≥ 13;λ = 2

)
= 1− 0.936 = 0.064,

from the tables, since
∑4
i=1Xi has a Poisson distribution with mean 8 when λ=2.

When H0 : θ = θ0 and H1 : θ = θ1 are both simple hypotheses, a critical region of size α is a best critical
region if the probability of rejecting H0 when H1 is true is a maximum when compared with all other critical
regions of size α. The test using the best critical region is called a most powerful test because it has the
greatest value of the power function at θ = θ1 when compared with that of other tests of signi�cance level
α. If H1 is a composite hypothesis, the power of a test depends on each simple alternative in H1 .

De�nition 19:
A test, de�ned by a critical region C of size α, is a uniformly most powerful test if it is a most
powerful test against each simple alternative in H1. The critical region C is called a uniformly
most powerful critical region of size α.

Let now consider the example when the alternative is composite.
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Example 4.8
Let X1, X2, ..., Xn be a random sample from N (µ, 36). We have seen that when testing H0 : µ = 50
against H1 : µ = 55, a best critical region C is de�ned by

C = {(x1, x2, ..., xn) : x ≥ c},

where c is selected so that the signi�cance level is α. Now consider testing H0 : µ = 50 against
the one-sided composite alternative hypothesis H1 : µ > 50. For each simple hypothesis in H1, say
µ = µ1 the quotient of the likelihood functions is

L(50)
L(µ1)

=
(72π)−n/2exp[−( 1

72 ) Pn
1 (xi−50)2]

(72π)−n/2exp[−( 1
72 ) Pn

1 (xi−µ1)
2]

= exp
[
−
(

1
72

)
{2 (µ1 − 50)

∑n
1 xi + n

(
502 − µ2

1

)
}
]
.

Now L (50) /L (µ1) ≤ k if and only if

x ≥ (−72) ln (k)
2n (µ1 − 50)

+
50 + µ1

2
= c.

Thus the best critical region of size α for testing H0 : µ = 50 against H1 : µ = µ1, where
µ1 > 50, is given by

C = {(x1, x2, ..., xn) : x ≥ c},

where is selected such that
P
(
X ≥ c;H0 : µ = 50

)
= α.

Note That: the same value of c can be used for each µ1 > 50 , but of course k does not remain
the same. Since the critical region C de�nes a test that is most powerful against each simple
alternative µ1 > 50, this is a uniformly most powerful test, and C is a uniformly most powerful
critical region if size α. Again if α=0.05, then c ≈ 52.47.

4.5 HYPOTHESES TESTING5

4.5.1 Hypotheses Testing - Examples.

Example 4.9
We have tossed a coin 50 times and we got k = 19 heads. Should we accept/reject the hypothesis
that p = 0.5, provided taht the coin is fair?

Null versus Alternative Hypothesis:

• Null hypothesis (H0) : p = 0.5.
• Alternative hypothesis (H1) : p 6= 0.5.

5This content is available online at <http://cnx.org/content/m13533/1.2/>.
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EXPERIMENT

Figure 4.3

Signi�cance level α = Probability of Type I error = Pr[rejecting H0 | H0 true]
P[k < 18 or k > 32]< 0.05.
If k < 18 or k > 32]< 0.05, then under the null hypothesis the observed event falls into rejection

region with the probability α < 0.05.

Note that: We want α as small as possible.
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(a)

(b)

Figure 4.4: (a) Test construction. (b) Cumulative distribution function.

Conclusion: No evidence to reject the null hypothesis.

Example 4.10
We have tossed a coin 50 times and we got k = 10 heads. Should we accept/reject the hypothesis



73

that p = 0.5, provided taht the coin is fair?

EXPERIMENT

Figure 4.5: Cumulative distribution function.

P[k ≤ 10 or k ≥ 40]≈ 0.000025. We could reject hypothesis H0 at a signi�cance level as low
as α = 0.000025.

Note That: p-value is the lowest attainable signi�cance level.

Remark: In STATISTICS, to prove something = reject the hypothesis that converse is true.

Example 4.11
We know that on average mouse tail is 5 cm long. We have a group of 10 mice, and give to each
of them a dose of vitamin T everyday, from the birth, for the period of 6 months.

We want to prove that vitamin X makes mouse tail longer. We measure tail lengths of out
group and we get the following sample:

Table 1

5.5 5.6 4.3 5.1 5.2 6.1 5.0 5.2 5.8 4.1
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• Hypothesis H0 - sample = sample from normal distribution with µ = 5 cm.
• Alternative H1 - sample = sample from normal distribution with µ > 5 cm.

CONSTRUCTION OF THE TEST

Figure 4.6

We do not know population variance, and/or we suspect that vitamin treatment may change the
variance - so we use t distribution (Section 2.5.1: THE t DISTRIBUTION).

• X = 1
N

∑N
i=1Xi,

• S =
√

1
N

∑N
i=1

(
Xi −X

)2
,

• t = X−µ
S

√
N − 1.

Example 4.12
χ2 test (K. Pearson, 1900)

To test the hypothesis that a given data actually come from a population with the proposed
distribution. Data is given in the Table 2 (DATA, p. 74).
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DATA

0.4319 0.6874 0.5301 0.8774 0.6698 1.1900 0.4360 0.2192 0.5082

0.3564 1.2521 0.7744 0.1954 0.3075 0.6193 0.4527 0.1843 2.2617

0.4048 2.3923 0.7029 0.9500 0.1074 3.3593 0.2112 0.0237 0.0080

0.1897 0.6592 0.5572 1.2336 0.3527 0.9115 0.0326 0.2555 0.7095

0.2360 1.0536 0.6569 0.0552 0.3046 1.2388 0.1402 0.3712 1.6093

1.2595 0.3991 0.3698 0.7944 0.4425 0.6363 2.5008 2.8841 0.9300

3.4827 0.7658 0.3049 1.9015 2.6742 0.3923 0.3974 3.3202 3.2906

1.3283 0.4263 2.2836 0.8007 0.3678 0.2654 0.2938 1.9808 0.6311

0.6535 0.8325 1.4987 0.3137 0.2862 0.2545 0.5899 0.4713 1.6893

0.6375 0.2674 0.0907 1.0383 1.0939 0.1155 1.1676 0.1737 0.0769

1.1692 1.1440 2.4005 2.0369 0.3560 1.3249 0.1358 1.3994 1.4138

0.0046 - - - - - - - -

Problem
Are these data sampled from population with exponential p.d.f.?

Solution
f (x) = e−x.
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CONSTRUCTION OF THE TEST

(a)

(b)

Figure 4.7
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Exercise 4.1 (Solution on p. 78.)

Are these data sampled from population with exponential p.d.f.?

TABLE 1

Actual
Situation

Ho true Ho false

decision accept Reject = error t. I reject Accept = error t.
II

probability 1− α α = signi�cance
level

1− β = power of
the test

β
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Solutions to Exercises in Chapter 4

Solution to Exercise 4.1 (p. 77)
f (x) = ae−ax.

1. Estimate a.
2. Use χ2 test.
3. Remember d.f. = K-2.



Chapter 5

Pseudo - Numbers

5.1 PSEUDO-NUMBERS1

5.1.1 UNIFORM PSEUDO-RANDOM VARIABLE GENERATION

In this paragraph, our goals will be to look at, in more detail, how and whether particular types of pseudo-
random variable generators work, and how, if necessary, we can implement a generator of our own choosing.
Below a list of requirements is listed for our uniform random variable generator:

1. A uniform marginal distribution,
2. Independence of the uniform variables,
3. Repeatability and portability,
4. Computational speed.

5.1.1.1 CURRENT ALGORITHMS

The generation of pseudo-random variates through algorithmic methods is a mature �eld in the sense that
a great deal is known theoretically about di�erent classes of algorithms, and in the sense that particular
algorithms in each of those classes have been shown, upon testing, to have good statistical properties. In
this section, let describe the main classes of generators, and then let make speci�c recommendation about
which generators should be implemented.

Congruential Generators
The most widely used and best understood class of pseudo-random number generators are those based

on the linear congruential method introduced by Lehmer (1951). Such generators are based on the following
formula:

Ui = (aUi−1 + c)modm, (5.1)

where Ui, i = 1, 2, ... are the output random integers; U0 is the chosen starting value for the recursion, called
the seed and a,c, and m are prechosen constants.

Notice That: to convert to uniform (0, 1) variates, we need only divide by modulus m, that
is, we use the sequence {Ui/m} .

The following properties of the algorithm are worth stating explicitly:

1This content is available online at <http://cnx.org/content/m13103/1.6/>.
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1. Because of the �mod m� operation (for background on modular operations, see Knuth, (1981) ), the
only possible values the algorithm can produce are the integers 0, 1, 2, ...,m− 1. This follows because,
by de�nition, x mod m is the remainder after x is divided by m.

2. Because the current random integer Ui depends only on the previous random integer Ui−1 once a
previous value has been repeated, the entire sequence after it must be repeated. Such a repeating
sequence is called a cycle, and its period is the cycle length. Clearly, the maximum period of
the congruential generator is m. For given choices of a, c, and m, a generator may contain many short
cycles, (see the Example 1 below), and the cycle you enter will depend on the seed you start with.
Notice that the generator with many short cycles is not a good one, since the output sequence will be
one of a number of short series, each of which may not be uniformly distributed or randomly dispersed
on the line or the plane. Moreover, if the simulation is long enough to cause the random numbers to
repeat because of the short cycle length, the outputs will not be independent.

3. If we are concern with a uniform (0, 1) variates, the �nest partition of the interval (0, 1) that this
generator can provide is [0, 1/m, 2/m, ..., (m− 1/m)]. This is, of course, not truly a uniform (0, 1)
distribution since, for any k in (0,m− 1) , we have P [k/m < U < (k + 1) /m] = 0, not 1/m are
required by theory for continuous random variables.

4. Choices of a,c, and m, will determine not only the �neness of the partition of (0, 1) and the cycle length,
and therefore, the uniformity of the marginal distribution, but also the independence properties of the
output sequence. Properly choosing a,c, and m is a science that incorporates both theoretical results
and empirical tests. The �rst rule is to select the modulus m to be �as large as possible�, so that there
is some hope to address point 3 above and to generate uniform variates with an approximately uniform
marginal distribution. However, simply having m large is not enough; one may still �nd that the
generator has many short cycles, or that the sequence is not approximately independent. See example
1 (Example 5.1) below.

Example 5.1
Consider

Ui = 2Ui−1mod232 (5.2)

Where a seed of the form 2k creates a loop containing only integers that are powers of 2, or

Ui = (Ui−1 + 1)mod232 (5.3)

which generates the nonrandom sequence of increasing integers. Therefore, the second equation
gives a generator that has the maximum possible cycle length but is useless for simulating a random
sequence.

Fortunately, one a value of the m has been selected; theoretical results exist that give conditions for choosing
values of the multiplier a and the additive constant c such that all the possible integers, 0 through m − 1,
are generated before any are repeated.

Notice, that: this does not eliminate the second counterexample above, which already has the
maximal cycle length, but is a useless random number generator.

THEOREM I
A linear congruential generator will have maximal cycle length m, if and only if:

• c is nonzero and is relatively prime to m (i.e., c and m have no common prime factors).
• (amodq) = 1 for each prime factor q of m.
• (amod4) = 1 if 4 is a factor of m.

PROOF

SEE: Knuth (1981, p.16).
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As a mathematical note, c is called relatively prime to m if and only if c and m have no common divisor
other than 1, which is equivalent to c and m having no common prime factor.

A related result concerns the case of c chosen to be 0. This case does not conform to condition in a
Theorem I (p. 80), a value Ui of zero must be avoided because the generator will continue to produce zero
after the �rst occurrence of a zero. In particular, a seed of zero is not allowable. By Theorem I (p. 80),
a generator with c = 0, which is called a multiplicative congruential generator, cannot have maximal
cycle length m. However, By Theorem II (p. 81). It can have cycle length m− 1.

THEOREM II
If c = 0 in a linear congruential generator, then Ui = 0 can never be included in a cycle, since the 0 will

always repeat. However, the generator will cycle through all m − 1 integers in the set (amodq) if and only
if:

• m is a prime integer and
• m is a primitive element modulo m .

PROOF

SEE: Knuth (1981, p.19).

A formal de�nition or primitive elements modulo m, as well as theoretical results for �nding them, are given
in Knuth (1981). In e�ect, when m is a prime, a is a primitive element if the cycle is of length m− 1. The
results of Theorem II (p. 81) are not intuitively useful, but for our purposes, it is enough to note that such
primitive elements exist and have veen computed by researchers,

SEE: e.g., Table24.8 in Abramowitz and Stegun, 1965.

Hence, we now must select one of two possibilities:

• Choose a, c, and m according to Theorem I (p. 80) and work with a generator whose cycle length is
known to be m.

• Choose c = 0, take a and m according to Theorem II (p. 81), use a number other than zero as the
seed, and work with a generator whose cycle length is known to be m− 1. A generator satisfying these
conditions is known as a prime-modulus multiplicative congruential generator and, because of
the simpler computation, it usually has an advantage in terms of speed over the mixed congruential
generator.

Another method frequency speeding up a random number generator that has c = 0 is to choose the
modulus m to be computationally convenient. For instance, consider m = 2k. This is clearly not a prime
number, but on a computer the modulus operation becomes a bit-shift operation in machine code. In such
cases, Theorem III gives a guise to the maximal cycle length.

THEOREM III
If c = 0 and m = 2k with k > 2, then the maximal possible cycle length is 2k−2. This is achieved if and

only if two conditions hold:

• a is a primitive element modulo m.
• the seed is odd.

PROOF

SEE: Knuth (1981, p.19).

Notice that we sacri�ce some of the cycle length and, as we will se in Theorem IV, we also lose some
randomness in the low-order bits of the random variates. Having use any of Theorems I (p. 80), II (p. 81),
or III (p. 81) to select triples (a, c, m) that lead to generators with su�ciently long cycles of known length,
we can ask which triple gives the most random (i.e., approximately independent ) sequence. Although some
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theoretical results exist for generators as a whole, these are generally too weak to eliminate any but the worst
generators. Marsaglia (1985) and Knuth(1981, Chap. 3.3.3) are good sources for material on that results.

THEOREM IV
If Ui = aUi−1mod2k, and we de�ne

Yi = Uimod2j , 0 < j < k (5.4)

then
Yi = aYi−1mod2j . (5.5)

In practical terms, this means that the sequence of j-lo-order binary bits of the Ui sequence, namely Yi cycle
with cycle length at most 2j . In particular, sequence of the least signi�cant bit (i.e., j=1) in (U1, U2, U3, ...)
must behave as (0, 0, 0, 0, ...) , (1, 1, 1, 1, ...) , (0, 1, 0, 1, ...) or (1, 0, 1, 0, ...).

PROOF

SEE: Knuth (1981, pp. 12-14).

Such normal behavior in the low-order bits of a congruential generator with non-prime-modulus m is an
undesirably property, which may be aggravated by techniques such as the recycling of uniform variates. It
has been observed (Hutchinson, 1966) that prime-modulus multiplicative congruential generators with full
cycle (i.e., when m is a positive primitive element) tend to have fairly randomly distributed low-order bits,
although no theory exists to explain this.

THEOREM V
If our congruential generator produces the sequence (U1, U2, ...), and we look at the following sequence

of points in n dimensions:

(U1, U2, U3, ..., Un) , (U2, U3, U4, ..., Un+1) , (U3, U4, U5, ..., Un+2) , ... (5.6)

then the points will all lie in fewer than (n|m)1/n parallel hyper planes.
PROOF

SEE: Marsaglia (1976).

Given these known limitations of congruential generator, we are still left with the question of how to choose
the �best� values for a, c, and m. To do this, researchers have followed a straightforward but time-consuming
procedure:

1. Take values a, c, and m that give a su�ciently long, known cycle length and usa the generator to
produce sequences of uniform variates.

2. Subject the output sequences to batteries of statistical tests for independence and a uniform marginal
distribution. Document the results.

3. Subject the generator to theoretical tests. In particular, the spectral test of Coveyou and MacPherson
(1967) is currently widely used and recognized as a very sensitive structural test for distinguishing
between good and bad generators. Document the results.

4. As new, more sensitive tests appear, subject to generator to those tests. Several such tests are discussed
in Marsaglia(1985).

see also: Other Types of Generators
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5.2 PSEUDO-RANDOM VARIABLE GENERATORS, cont.2

5.2.1 PSEUDO-RANDOM VARIABLE GENERATORS, cont.

5.2.1.1 A Shift-Register Generator

An alternative class of pseudo-numbers generators are shift-register or Tausworthe generators, which
have their origins in the work of Golomb (1967). These algorithms operate on n-bit, pseudo-random binary
vectors, just as congruential generators (p. 79) operate on pseudo-random integers. To return a uniform
(0, 1) variate, the binary vector must be converted to an integer and divided by one plus the largest possible
number, 2n.

5.2.1.2 Fibonacci Generators

The �nal major class of generators to be considered are the lagged Fibonacci generators, which take
their name from the famous Fibonacci sequence Ui = Ui−1 + Ui−2. This recursion is reminiscent of the
congruential generators, which the added feature that the current value depends on the two previous values.

The integer generator based directly on the Fibonacci formula

2n (5.7)

has been investigated, but not found to be satisfactory random. A more general formulation can be given
by the equation:

Ui = Ui−r · Ui−s, r ≥ 1, s ≥ 1, r 6= s, (5.8)

where the symbol `square' represents an arbitrary mathematical operation. We can think of the Ui = 0 as
either binary vectors, integers, or real numbers between 0 and 1, depending on the operation involved.

As examples:

1. The Ui = 0 are real and dot represents either mod 1 addition or subtraction.
2. The Ui = 0 are (n− 1) �bit integers and dot represents either mod 2n addition, subtraction or multi-

plication.
3. The Ui = 0 are binary vectors and dot represents any of binary addition, binary subtraction, exclusive-

or addition, or multiplication.

Other generators that generalize even further on the Fibonacci idea by using a linear combination of previous
random integers to generate the current random integer are discussed in Knuth (1981, Chap 3.2.2).

5.2.1.3 Combinations of Generators (Shu�ing)

Intuitively, it is tempting to believe that �combining� two sequences of pseudo-random variables will produce
one sequence with better uniformity and randomness properties than either of the two originals. In fact, even
though good congruential (p. 79), Tausworthe (Section 5.2.1.1: A Shift-Register Generator), and Fibonacci
(Section 5.2.1.2: Fibonacci Generators) generators exist, combination generators may be better for a number
of reasons. The individual generators with short cycle length can be combined intone with a very long cycle.
This can be a great advantage, especially on computers with limited mathematical precision. These potential
advantages have led to the development of a number of successful combination generators and research into
many others.

One of such generator, is a combination of three congruential generators, developed and tested by Wich-
mann and Hill (1982).

Another generator, Super-Duper, developed by G.Marsaglia, combines the binary form of the output
form the multiplicative congruenatial generator with a multiplier a=69.069 and modulus m = 232 with the

2This content is available online at <http://cnx.org/content/m13104/1.4/>.
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output of the 32-bit Tausworthe generator using a left-shift of 17 and a right shift of 15. This generator
performs well, though not perfectly, and su�ers from some practical drawbacks.

A third general variation, a shu�ed generator, randomizes the order in which a generator's variates are
output. Speci�cally, we consider one pseudo-random variate generator that produces the sequence (U1, U2, ...)
of uniform (0,1) variates, and a second generator that outputs random integers , say between 1 and 16.

The algorithm for the combined, shu�ed generator is as follows:

1. Set up a �table� in memory of locations 1 through 16 and store the values U1, U2, ..., U16 sequentially
in the table.

2. Generate one value, V, between 1 and 16 from the second generator.
3. Return the U variate from location V in the table as the desired output pseudo-random variate.
4. Generate a new U variate and store it in the location V that was just accessed.
5. If more random variates are desired, return to Step 2.

Notice: the size of the table can be any value, with larger tables creating more randomness but
requiring more memory allocation

This method of shu�ing by randomly accessing and �lling a table is due to MacLaren and Marsaglia (1965).
Another scheme, attributed to M.Gentlemanin Andrews et al. (1972), is to permute the table of 128 random
numbers before returning them for use. The use of this type of combination of generators has also been
described in the contexts of simulation problems in physics by Binder and Stau�er (1984).

5.3 THE IVERSE PROBABILITY METHOD FOR GENERATING
RANDOM VARIABLES3

5.3.1 THE IVERSE PROBABILITY METHOD FOR GENERATING RAN-
DOM VARIABLES

Once the generation of the uniform random variable (Section 5.1.1: UNIFORM PSEUDO-RANDOM VARI-
ABLE GENERATION) is established, it can be used to generate other types of random variables.

5.3.1.1 The Continuous Case

THEOREM I
Let X have a continuous distribution FX (x), so that F−1

X (α) exists for 0 < α < 1 (and is hopefully
countable). Then the random variable F−1

X (U) has distribution FX (x), U is uniformly distributed on (0,1).
PROOF

P
(
F−1
X (U) ≤ x

)
= P

(
FX
(
F−1
X (U)

)
≤ FX (x)

)
. (5.9)

Because FX (x) is monotone. Thus,

P
(
F−1
X (U) ≤ x

)
= P (U ≤ FX (x)) = FX (x) . (5.10)

The last step follows because U is uniformly distributed on (0,1). Diagrammatically, we have that (X ≤ x)
if and only if [U ≤ FX (x)], an event of probability FX (x).

As long as we can invert the distribution function FX (x) to get the inverse distribution function F−1
X (α),

the theorem assures us we can start with a pseudo-random uniform variableU and turn into a random variable
F−1
X (U), which has the required distribution FX (x).

Example 5.2
The Exponential Distribution

3This content is available online at <http://cnx.org/content/m13113/1.3/>.
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Consider the exponential distribution de�ned as

α = FX (x) = {
1− e−λx, λ > 0, x ≥ 0,

0, x < 0.
(5.11)

Then f or the inverse distribution function we have

x = − 1
λ
ln (1− α) = F−1 (α) . (5.12)

Thus if U is uniformly distributed on 0 to 1, then X = − 1
λ ln (1− U) has the distribution of an

exponential random variable with parameter λ. We say, for convenience, that X is exponential (λ).

Note that: If U is uniform (0,1), then so is (1-U), and the pair U and (1-U) are interchangeable
in terms of distribution. Hence, X' = − 1

λ ln (U) is exponential. However, the two variables X and
X' are correlated and are known as an antithetic pair.

Example 5.3
Normal and Gamma Distributions

For both these cases there is no simple functional form for the inverse distribution F−1
X (α), but

because of the importance of the Normal and Gamma distribution models, a great deal of e�ort
has been expended in deriving good approximations.

The Normal distribution is de�ned through its density,

fX (x) =
1√
2πσ

exp

[
−(x− µ)2

2σ2

]
. (5.13)

So that,

FX (x) =

∞∫
−∞

1√
2πσ

exp

[
−(x− u)2

2σ2

]
dv. (5.14)

The normal distribution function FX (x) is also often denoted Φ (x), when the parameter u and σ
are set to 0 to 1, respectively. The distribution has no closed-form inverse, F−1

X (α), but the inverse
is needed do often that Φ−1 (α), like logarithms or exponentials, is a system function.

The inverse of the Gamma distribution function, which is given by

FX (x) =
1

Γ (k)

kx/u∫
0

vk−1e−vdv, x ≥ 0, k > 0, u > 0. (5.15)

Is more di�cult to compute because its shape changes radically with the value of k. It is however
available on most computers as a numerically reliable function.

Example 5.4
The Normal and Gamma Distributions

A commonly used symmetric distribution, which has a shape very much like that of the Normal
distribution, is the standardized logistic distribution.

FX (x) =
ex

1 + ex
=

1
1 + e−x

,−∞ < x <∞, (5.16)

with probability density function

FX (x) =
ex

1 + ex
=

1
1 + e−x

,−∞ < x <∞. (5.17)
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Note that: FX (−∞) = e−∞/ (1 + e−∞) = 0 and FX (∞) = 1 by using the second form for
FX (x).

The inverse is obtained by setting α = ex

1+ex . Then, α+ αex = ex or α = ex (1− α) .
Therefore,

x = F−1
X (α) = lnα− ln (1− α) .

And the random variable is generated, using the inverse probability integral method. As follows
X = lnU − ln (1− U) .

5.3.1.2 The Discrete Case

Let X have a discrete distribution FX (x) that is, FX (x) jumps at points xk = 0, 1, 2, ... . Usually we have
the case that xk = k, so that X is an integer value.

Let the probability function be denoted by

pk = P (X = xk) , k = 0, 1, .... (5.18)

The probability distribution function is then,

FX (xk) = P (X ≤ xk) =
∑
j≤k

pj , k = 0, 1, ..., (5.19)

and the reliability or survivor function is

RX (xk) = 1− FX (xk) = P (X > xk) , k = 0, 1, .... (5.20)

The survivor function is sometimes easier to work with than the distribution function, and in �elds such
as reliability, it is habitually used. The inverse probability integral transform method of generating discrete
random variables is based on the following theorem.

THEOREM
Let U be uniformly distributed in the interval (0,1). Set X = xk whenever FX (xk−1) < U ≤ FX (xk),

for k = 0, 1, 2, ... with FX (x−1) = 0. Then X has probability function pk.
PROOF
By de�nition of the procedure,
X = xk if and only if FX (xk−1) < U ≤ FX (xk).
Therefore,

P (X = xk) = PFX ((xk−1) < U ≤ FX (xk)) = FX (xk)− F (xk−1) = pk. (5.21)

By the de�nition of the distribution function of a uniform (0,1) random variable.
Thus the inverse probability integral transform algorithm for generating X is to �nd xk such that U ≤

FX (xk) and U > FX (xk−1) and then set X = xk.
In the discrete case, there is never any problem of numerically computing the inverse distribution function,

but the search to �nd the values FX = (xk) and FX (xk−1) between which U lies can be time-consuming,
generally, sophisticated search procedures are required. In implementing this procedure, we try to minimize
the number of times one compares U to FX = (xk). If we want to generate many of X, and FX = (xk) is
not easily computable, we may also want to store FX = (xk) for all k rather than recomputed it. Then we
have to worry about minimizing the total memory to store values of FX = (xk).

Example 5.5
The Binary Random Variable

To generate a binary-valued random variable X that is 1 with probability p and 0 with proba-
bility 1-p, the algorithm is:



87

• If U ≤ p, set X=1.
• Else set X=0.

Example 5.6
The Discrete Uniform Random Variable

Let X take on integer values between and including the integers a and b, where a ≤ b, with
equal probabilities. Since there are (b− a+ 1) distinct values for X, the probability of getting any
one of these values is, by de�nition, 1/ (b− a+ 1). If we start with a continuous uniform (0,1)
random number U, then the discrete inverse probability integral transform shows that

X= integer part of [(b− a+ 1)U + a].

Note that: The continuous random variable [(b− a+ 1)U + a] is uniformly distributed in the
open interval (a, b+ 1) .

Example 5.7
The Geometric Distribution

Let X take values on zero and the positive integers with a geometric distribution. Thus,

P (X = k) = pk = (1− ρ) ρk, k = 0, 1, 2, ...., 0 < ρ < 1, (5.22)

and

P (X ≤ k) = FX (k) = 1− ρk+1, k = 0, 1, 2, ...., 0 < ρ < 1. (5.23)

To generate geometrically distributed random variables then, you can proceed successively accord-
ing to the following algorithm:

• Compute FX (0) = 1− ρ. Generate U.
• If U ≤ FX (0) set X=0 and exit.
• Otherwise compute FX (1) = 1− ρ2.
• If U ≤ FX (1) set X=1, and exit.
• Otherwise compute FX (2), and so on.
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Glossary

A

A test, de�ned by a critical region C of size α, is a uniformly most powerful test if it is a
most powerful test against each simple alternative in H1. The critical region C is called a
uniformly most powerful critical region of size α.

C

1. Consider the test of the sample null hypothesis H0 : θ = θ0 against the simple alternative
hypothesis H1 : θ = θ1.

2. Let C be a critical region of size α; that is, α = P (C; θ0). Then C is a best critical region of
size α if, for every other critical region D of size α = P (D; θ0), we have that

P (C; θ1) ≥ P (D; θ1) .

CUMULATIVE DISTRIBUTION FUNCTION

1. Let X be a random variable of the discrete type with space R and p.d.f. f (x) = P (X = x) ,
x ∈ R. Now take x to be a real number and consider the set A of all points in R that are less
than or equal to x. That is, A = (t : t ≤ x) and t ∈ R.

2. Let de�ne the function F(x) by

F (x) = P (X ≤ x) =
∑
t∈A

f (t) . (1.1)

The function F(x) is called the distribution function (sometimes cumulative distribution
function) of the discrete-type random variable X.

D DEFINITION OF EXPONENTIAL DISTRIBUTION

Let λ = 1/θ, then the random variable X has an exponential distribution and its p.d.f. id
de�ned by

f (x) =
1
θ
e−x/θ, 0 ≤ x <∞, (2.4)

where the parameter θ > 0.

DEFINITION OF RANDOM VARIABLE

1. Given a random experiment with a sample space S, a function X that assigns to each element s
in S one and only one real number X (s) = x is called a random variable. The space of X is
the set of real numbers {x : x = X (s) , s ∈ S}, where s belongs to S means the element s belongs
to the set S.

2. It may be that the set S has elements that are themselves real numbers. In such an instance we
could write X (s) = s so that X is the identity function and the space of X is also S. This is
illustrated in the example below.

DEFINITION OF UNIFORM DISTRIBUTION
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The random variable X has a uniform distribution if its p.d.f. is equal to a constant on its
support. In particular, if the support is the interval [a, b], then

f (x) =
1

b = a
, a ≤ x ≤ b. (2.3)

G

Given a random sample X1, X2, ..., Xn from a normal distribution N
(
µ, σ2

)
, consider the

closeness of X, the unbiased estimator of µ, to the unknown µ. To do this, the error structure
(distribution) of X, namely that X is N

(
µ, σ2/n

)
, is used in order to construct what is called a

con�dence interval for the unknown parameter µ, when the variance σ2 is known.

I

If E [u (x1, x2, ..., xn)] = θ is called an unbiased estimator of θ. Otherwise, it is said to be
biased.

1. If w < 0, then F (w) = 0 and F ' (w) = 0, a p.d.f. of this form is said to be one of the gamma
type, and the random variable W is said to have the gamma distribution.

2. The gamma function is de�ned by

Γ (t) =

∞∫
0

yt−1e−ydy, 0 < t.

L

Let X have a gamma distribution with θ = 2 and α = r/2, where r is a positive integer. If the
p.d.f. of X is

f (x) =
1

Γ (r/2) 2r/2
xr/2−1e−x/2, 0 ≤ x <∞. (2.6)

We say that X has chi-square distribution with r degrees of freedom, which we abbreviate
by saying is χ2 (r).

M MATHEMATICAL EXPECTATION

If f(x) is the p.d.f. of the random variable X of the discrete type with space R and if the
summation ∑

R

u (x) f (x) =
∑
x∈R

u (x) f (x) (1.2)

exists, then the sum is called the mathematical expectation or the expected value of the
function u(X), and it is denoted by E [u (X)] . That is,

E [u (X)] =
∑
R

u (x) f (x) . (1.3)

We can think of the expected value E [u (X)] as a weighted mean of u(x), x ∈ R, where the
weights are the probabilities f (x) = P (X = x) .

MATHEMATICAL EXPECTIATION

If f (x) is the p.d.f. of the random variable X of the discrete type with space R and if the
summation
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O

1. Once the sample is observed and the sample mean computed equal to x , the interval

x− zα/2
(
σ/
√
n
)
, x+ zα/2

(
σ/
√
n
)

is a known interval. Since the probability that the random interval covers µ before the sample is
drawn is equal to 1− α, call the computed interval, x± zα/2 (σ/

√
n)(for brevity), a

100 (1− α) % con�dence interval for the unknown mean µ.

2. The number 100 (1− α) %, or equivalently, 1− α, is called the con�dence coe�cient.

P POISSON DISTRIBUTION

We say that the random variable X has a Poisson distribution if its p.d.f. is of the form

f (x) =
λxe−λ

x!
, x = 0, 1, 2, ...,

where λ > 0.

POISSON PROCCESS

Let the number of changes that occur in a given continuous interval be counted. We have an
approximate Poisson process with parameter λ > 0 if the following are satis�ed:

PROBABILITY DENSITY FUNCTION

1. Function f(x) is a nonnegative function such that the total area between its graph and the x axis
equals one.

2. The probability P (a < X < b) is the area bounded by the graph of f (x) , the x axis, and the
lines x = a and x = b .

3. We say that the probability density function (p.d.f.) of the random variable X of the
continuous type, with space R that is an interval or union of intervals, is an integrable function
f (x) satisfying the following conditions:

• f (x) > 0 , x belongs to R,

•
∫
R

f (x) dx = 1,

• The probability of the event A belongs to R is P (X) ∈ A
∫
A

f (x) dx.

PROBABILITY DENSITY FUNCTION

1. The distribution function of a random variable X of the continuous type, is de�ned in terms of
the p.d.f. of X, and is given by

F (x) = P (X ≤ x) =

x∫
−∞

f (t) dt.

2. For the fundamental theorem of calculus we have, for x values for which the derivative F ' (x)
exists, that F'(x)=f (x).

T t Distribution

If Z is a random variable that is N (0, 1), if U is a random variable that is χ2 (r), and if Z and U
are independent, then

T =
Z√
U/r

=
X − µ
S/
√
n

(2.9)

has a t distribution with r degrees of freedom.
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1. The random variable X has a normal distribution if its p.d.f. is de�ned by

f (x) =
1

σ
√

2π
exp

[
− (x− µ)2

2σ2

]
,−∞ < x <∞, (2.8)

where µ and σ2 are parameters satisfying −∞ < µ <∞, 0 < σ <∞ , and also where exp [v]
means ev.

2. Brie�y, we say that X is N
(
µ, σ2

)
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