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We consider right censored survival data:

3+, 6, 2.2, 8+, 12, · · · .

They are commonly recorded as two vectors, instead of a ‘plus’:

T = (3, 6, 2.2, 8, 12, · · ·)

δ = (0, 1, 1, 0, 1, · · ·);

with (T1, δ1) = (3, 0) etc.
Assume (T1, δ1), (T2, δ2), · · · are iid (2-dimensional) random vectors from a two dimen-

sional distribution; with one component continuous (T ) and one component discrete (δ,
only two possible values).

The likelihood function is the probability of the observed sample under assumed model,
be it parametric or nonparametric:

n∏
i=1

P (T = ti, D = δi) =
n∏
i=1

pi . (1)

Remark: here pi is the joint probability for (Ti, δi).
This somewhat awkward 2 dimensional distribution can equivalently be written as two

1-dimensional sub-distributions or sub-survival functions

U1(t) = P (T > t, δ = 1) and U0(t) = P (T > t, δ = 0). (2)

By equivalent we mean 1-1 correspondence, i.e. given the 2-dimensional joint distribution,
we can derive the two sub-survival functions. Conversely, given the two sub-survival
functions, we can determine the joint distribution.

Using these two sub-survival functions the likelihood can be written as

n∏
i=1

{−∆U1(Ti)}δi{−∆U0(Ti)}1−δi .

Here ∆U1(t) = U1(t+)− U1(t−) = −P (T = t, δ = 1) etc.
Until now we only assumed iid-ness of the (Ti, δi) vectors, or patient to patient iid.
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If we further assume the random independent censoring model, that is, the ‘plus’ sign
is due to an independent follow-up time Ci been shorter then the associated lifetime Xi:

Ti = min(Xi, Ci) and δi = I[Xi ≤ Ci]

then we have
U1(t) = P (T > t, δ = 1) =

∫ ∞
t

1−G(s)dF (s) (3)

and
U0(t) = P (T > t, δ = 0) =

∫ ∞
t

1− F (s)dG(s) , (4)

in the above we used G(·) to denote the CDF of Ci and F (·) to denote the CDF of Xi.
It can be shown that the two sub-survival functions, U0 and U1, are also equivalent to

the two proper distributions, F (s) and G(s) under the independent random censorship
model.

Exercise: Given the two sub-survival function U1 and U0, derive the distributions F
and G under independent random censorship model. [The converse is already given as in
the above two integrals: determine the two sub-survival functions, U1 and U0, in terms of
F and G.]

[Remark: identifiability. If we do not assume independency then there are many
choices of F and G and with various degrees of dependency and all of them will give the
same sub-survival functions U1 and U0. See Tsiatis]

Assume independent censoring and given n iid observations, (Ti, δi), the likelihood
function can further be written in terms of F and G:

n∏
i=1

[(1−G(ti))dF (ti)]
δi [(1− F (ti))dG(ti)]

1−δi . (5)

In most cases, we are mainly concerned with the inference of F (·); not G(·), since
the G contains information related to the quality of follow-up time. Only F contains the
information about survival. So, the terms that do not involve F are considered constant,
and the likelihood (concerning F ) is proportional to

n∏
i=1

[dF (ti)]
δi [1− F (ti)]

1−δi . (6)

The log likelihood is, up to a constant term,∑
i

δi log dF (ti) + (1− δi) log[1− F (ti)] . (7)

If all the observations are completely observed, i.e. no censor (all δ = 1) then the
likelihood function is just ∏

i

[dF (ti)] . (8)

This last likelihood often written as∏
pi with

∑
pi ≤ 1.
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Remark: Notice the different meanings of the pi here and in (1) where the pi is for
the 2-dimensional joint probabilities.

When there are some censored observations, the maximization of (7) is obtained by a
discrete distribution, the so called Kaplan-Meier estimator (Kaplan-Meier 1958).

Remark: If the observed data is merely independent but not identically distributed
(like in a regression setting), then the final (log) likelihood is similar to (6) or (7) except
the CDF F (·) will become Fi(·).

0.1 Likelihood in Terms of Hazard

Because cumulative hazard function and cumulative distribution function has 1 to 1 cor-
respondence, this censored empirical likelihood can be written in terms of the hazard.
However, due to the continuous/discrete version of the formula, we may end up with
several versions of the likelihood.

Poisson version of the likelihood:
Let H(t) denote the cumulative hazard function for the random variable Xi. By using

the relation
1− F (t) = e−H(t), (9)

for a single observation (Ti, δi), the contribution to log empirical likelihood is

δi log dF (ti) + (1− δi) log[1− F (ti)] = δi log ∆H(ti)−H(ti) . (10)

However, the CDF F that achieve the maximum of log likelihood, the Kaplan-Meier
estimator, is discrete. If we assume purely discrete H then the function value at t is just
the sum of all jumps up to t:

δi log ∆H(ti)−
∑
j

∆H(tj)I[tj ≤ ti]. (11)

For the log likelihood based on n iid observations, the log likelihood is the sum of n
terms each like the above. And if merely independent is assumed, the likelihood will be
Hi

Remark: careful reader may detect some inconsistency: we used a formula (9) which
only works for the continuous case when deriving (10) but later assumes a purely discrete
H in going from (10) to (11). If the underlying distribution for the survival times are
continuous, then the jumps in the Kaplan-Meier etc. are shrinking to zero as sample
size grow, and the inconsistency should diminish. But if the true survival distribution is
discrete, then the discrepancy will stay even as sample size grow.

Bionomial version of the likelihood:
Here we always stick to the discrete version of the CDF/hazard function.
By using the relation

1− F (t) =
∏
s≤t

[1−∆H(s)]
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for a single observation observation Ti, δi, the contribution to the log empirical likelihood
is,

δi log ∆H(ti) +
∑
j

I[tj < ti] log[1−∆H(tj)] + (1− δi) log[1−∆H(ti)]

Notice the last term is always zero, (assuming that the cumulative hazard function H(·)
do not jump when δ = 0). Thus we have

δi log ∆H(ti) +
∑
j

I[tj < ti] log[1−∆H(tj)].

The likelihood for n iid observations is then

n∑
i=1

δi log ∆H(ti) +
∑
i

∑
j

I[tj < ti] log[1−∆H(tj)].

Switch the order of summation on the second term, we have

n∑
i=1

δi log ∆H(ti) +
∑
j

log[1−∆H(tj)]

(∑
i

I[tj < ti]

)

Finally, use different subscript for the double summation: use ts for ti and use ti for
tj, the log empirical likelihood for n observations is

n∑
i=1

δi log ∆H(ti) +
n∑
i=1

log[1−∆H(ti)]

(∑
s

I[ti < ts]

)
. (12)

One interesting observation is that the hazard empirical likelihood using either the
Poisson or binomial version, the maximizer is always the Nelson-Aalen estimator:

∆H∗(ti) =

∑
j δiI[tj = ti]∑
j I[ti ≤ tj]

.

This can be verified by taking derivative and set it to zero in the log likelihood expression.
However, the Poisson version is easier to work with when we impose Cox model type

of constraints.
When we use parametric approach to the analysis of censored data, the CDF/hazard

function are usually continuous and thus we use likelihood (7) or (10). When we use
nonparametric approach the maximizer are usually discrete and thus we use the likelihood
(7), (11) or (12), depending if we are modeling the hazard or mean.
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