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Abstract

In recent papers published in the American Journal
of Epidemiology, the authors used Cox's
proportional hazards regression modeling to model
the time until an event of interest and compare the
cumulative probability of hospitalization over time
for two or more cohorts while adjusting for other
influential covariates. In this presentation these
statistical procedures will be looked at more closely
by using SAS. The usefulness of the baseline
option in PROC PHREG will be demonstrated with
the creation and output of survival function
estimates, which are a function of the cumulative
probability estimates over time.

This real data example using Cox modeling will
show what increased risk for hospitalization for an
event of interest might look like graphically and in a
risk of event type ratio. Further analyses using the
survivor function estimates will look for graphical
representation of a temporal bias during the
observation period. The SAS system's PROC
PHREG with baseline option was instrumental in
searching for possible temporal biases and dealing
with attrition of subjects over our study period.

Introduction to Survival Analysis

The term "survival analysis" pertains to a statistical
approach designed to take into account the amount
of time an experimental unit contributes to a study.
That is, it is the study of time between entry into
observation and a subsequent event. Originally,
the event of interest was death hence the term,
"survival analysis." The analysis consisted of
following the subject until death. The uses in the
survival analysis of today vary quite a bit.
Applications now include time until onset of
disease, time until stockmarket crash, time until
equipment failure, time until earthquake, and so on.
The best way to define such events is simply to
realize that these events are a transition from one

discrete state to another at an instantaneous
moment in time. Of course, the term
"instantaneous”, which may be vyears, months,
days, minutes, or seconds, is relative and has only
the boundaries set by the researcher.

The History of Survival Analysis

The origin of survival analysis goes back to
mortality tables from centuries ago. However, it was
not until World War Il that a new era of survival
analysis emerged. This new era was stimulated by
interest in reliability (or failure time) of military
equipment. At the end of the war these newly
developed statistical methods emerging from strict
mortality data research to failure time research,
quickly spread through private industry as
customers became more demanding of safer, more
reliable products. As the uses of survival analysis
grew, parametric models gave way to
nonparametric and semiparametric approaches for
their appeal in dealing with the ever-growing field of
clinical trials in medical research. Survival analysis
was well suited for such work because medical
intervention follow-up studies could start without all
experimental units enrolled at start of observation
time and could end before all experimental units
had experienced an event. This is extremely
important because even in the best-developed
studies, there will be subjects who choose to quit
participating, who move too far away to follow, or
who will die from some unrelated event. The
researcher was no longer forced to withdraw the
experimental unit and all associating data from the
study, instead techniques called censoring enabled
researchers to analyze incomplete data due to
delayed entry or withdrawal from the study. This
was important in allowing each experimental unit to
contribute all of the information possible to the
model for the amount of time the researcher was
able to observe the unit.

The last great strides in the application of survival
analysis techniques has been a direct result of the



availability of software packages and high
performance computers which are now able to run
these difficult and computationally intensive
algorithms relatively efficiently.

Some Tools Used in Survival Analysis

First, recall that time is continuous, which results in
the probability of an event at a single point of a
continuous distribution being zero. We are
challenged to define the probability of these events
over distribution.  This is best described by
graphing the distribution of event times. To ensure
the readers will start with the same fundamental
tools of survival analysis, a brief descriptive section
of these important concepts will follow. A more
detailed description of the probability density
function, the cumulative distribution function, the
hazard function, and the survivor function, can be
found in any intermediate level statistical textbook.

So that the reader will be able to look for certain
relationships while reading, it is important to note
before the brief descriptions the one-to-one
relationship that these four functions possess. The
pdf can be obtained by taking the derivative of the
cdf and likewise, the cdf can be obtained by taking
the integral of the pdf. The survivor function is
simply 1 minus the cdf. Which leaves the hazard
function as simply being the pdf over the survivor
function. It will be these relationships later that will
allow us to calculate the cdf from the survivor
function estimates that the SAS procedure PROC
PHREG will output.

The Cumulative Distribution Function

The cumulative distribution function (cdf) is very
useful in describing the continuous probability
distribution of a random variable, such as time, in a
survival analysis. The cdf of a random variable T,
denoted F, (t), is defined by F, (t) = P, (T < t). This
is interpreted as a function that will give the
probability that the variable T will be less than or
equal to any value t that we choose. Several
properties of a distribution function F(t) can be listed
as a consequence of the knowledge of probabilities.
Because F(t) has the probability 0 < F(t) < 1, then
F(t) is a nondecreasing function of t, and as t
approaches «, F(t) approaches 1.

The Probability Density Function

The probability density function (pdf) is also very
useful in describing the continuous probability
distribution of a random variable. The pdf of a
random variable T, denoted f.(t), is defined by f(t) =
d F, (1) / dt. That is, the pdf is the derivative or
slope of the cdf. Every continuous random variable
has its own density function, the probability P(a < T
< b) is the area under the curve between times a
and b.

The Survival Function

Let T > 0 have a pdf f(t) and cdf F(t). Then the
survival function takes on the following form:

S(1)

P{T >t}

1-F(@)

That is, the survival function gives the probability of
surviving or being event-free beyond time t.
Because S(t) is a probability, it is positive and
ranges from 0 to 1. It is defined as S(0) = 1 and as
t approaches «, S(t) approaches 0. The Kaplan-
Meier estimator, or product limit estimator, is the
estimator used by most software packages because
of the simplistic step idea. The Kaplan-Meier
estimator incorporates information from all of the
observations available, both censored and
uncensored, by considering any point in time as a
series of steps defined by the observed survival and
censored times. The survival curve describes the
relationship between the probability of survival and
time.

The Hazard Function

The hazard function h(t) is given by the following:

ht) = P{t < T < (t+A) | T>t}
f(t) / (1 - F(t))

= f(t)/S()

The hazard function describes the concept of the
risk of an outcome (e.g., death, failure,
hospitalization) in an interval after time t, conditional
on the subject having survived to time t. It is the
probability that an individual dies somewhere
between t and t + A, divided by the probability that
the individual survived beyond time t. The hazard
function seems to be more intuitive to use in



survival analysis than the pdf because it attempts to
quantify the instantaneous risk that an event will
take place at time t given that the subject survived
to time t.

Incomplete Data

Observation time has two components that must be
carefully defined in the beginning of any survival
analysis. There is a beginning point of the study
where time=0 and a reason or cause for the
observation of time to end. For example, in a
complete observation cancer study, observation of
survival time may begin on the day a subject is
diagnosed with the cancer and end when that
subject dies as a result of the cancer. This subject
is what is called an uncensored subject, resulting
from the event occurring within the time period of
observation. Complete observation time data like
this example are desired but not realistic in most
studies. There is always a good possibility that the
patient might recover completely or the patient
might die due to an entirely unrelated cause. In
other words, the study cannot go on indefinitely,
waiting for an event from a participant and
unforeseen things happen to study participants that
make them unavailable for observation. The
censoring of study participants therefore deals with
the problems of incomplete observations of time
due to assumed random factors not related to the
study design. Note: This differs from truncation
where observations of time are incomplete due to a
selection process inherent to the study design.

Left and Right Censoring

The most common form of incomplete data is right
censoring. This occurs when there is a defined
time (t=0) where the observation of time is started
for all subjects involved in the study. A right
censored subject's time terminates before the
outcome of interest is observed. For example, a
subject could move out of town, die of an
unexpected cause, or could simply choose not to
participate in the study any longer. Right censoring
techniques allow subjects to contribute to the model
until they are no longer able to contribute (end of
the study, or withdrawal), or they have an event.
Conversely, an observation is left censored if the
event of interest has already occurred when
observation of time begins. For the purposes of this
study we focused on right censoring.

The following graph shows a simple study design
where the observation times start at a consistent
point in time (t=0). The X's represent events and
the O's represent censored observations. Notice
that all observations are classified with an event, or
they are censored at time of separation or at the
end of the study period. Some subjects have
events early in the study period and others have
events at the end of the study period. Likewise
some subjects leave early, but most do not have an
event during the entire study and are simply right
censored at the end. There is no need for left
censoring or truncation techniques in this simple
example.
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Time Dependencies

In some situations the researcher may find that the
dynamical nature of a variable causes changes in
value over the observation time. In other instances
the researcher may find that certain trends effect
the probability of the event of interest over time.
There are easy ways to test and account for these
temporal biases within PROC PHREG but be
careful if you have a large number of observations
as the computation of the subsequent partial
likelihood is very taxing and time consuming. An
easier way to see if there are existing temporal
biases is to look at the plots of the cumulative
distributions of the probability of event. If there is a
steep increase or decrease in the cumulative
probability, it may suggest more investigation is
needed. It is important to note here that when a
time dependent variable is introduced into the
model, the ratios of the hazards will not remain
steady. This only effects the model structure. We
will still be doing a Cox regression but instead the
model used is called the extended Cox model.



The Studies

The underlining purpose of these studies was to
investigate the effect of a specific exposure on an
outcome of interest. Then we sought to identify 2 or
more cohorts who might have had this exposure or
some degree of exposure and compare the
hospitalization experiences for certain outcomes of
interest to another similar cohort without that
particular exposure.

Demographic data

Demographic data available for analysis included
social security numbers (for linking purposes only),
gender, date of birth, race, ethnicity, home of
record, marital status, military occupational status,
military pay grade, length of military service,
deployment status, salary, date of separation from
military service, military service branch, and
exposure status.

Hospitalization Data

Data describing hospitalization experiences were
captured from all United States Department of
Defense military treatment facilities for the period of
October 1, 1988, through December 31, 1999. The
actual observation period varied by study. Removal
of personnel with diagnoses of interest prior to the
start of the study follow-up period was completed.
These data included date of admission in a hospital
and up to eight discharge diagnoses associated
with the admission to the hospital. Additionally, a
preexposure period covariate (coded as yes or no)
was used to reflect a hospital admission during the
12 months prior to the start of the exposure period.
Note: the exposure period was the year from
August 1, 1990, to August 1, 1991. Diagnoses
were coded according to the International
Classification of Diseases, Ninth Revision (ICD-9).
For these analyses, we scanned for the specific 3-
,4-, or 5-digit component of the ICD-9 diagnoses.

Observation Time

The focus of each study was to see if a certain
exposure or lack of exposure had any influence on
the targeted disease outcomes. For each subject,
hospitalizations (if any) were scanned in
chronological order and diagnostic fields were
scanned in numerical order for the ICD-9 codes of
interest. Only the first hospitalization meeting the
outcome criteria was counted for each subject.

Subjects were classified as having an event if they
were hospitalized in any Department of Defense
hospital facility worldwide with the targeted

diagnoses, and as censored otherwise.
Observation time varied with the dates we chose to
start and end observation but was calculated from
the start of follow-up until event, separation from
military service, or the end of the study period,
whichever occurred first. Subjects were allowed to
leave the study and assumed a random early
departure distribution. Delayed entry and events
occurring before the start date of the study were not
a concern, therefore only right censoring was
needed to allow for the random early departure of
subjects (see previous graph).

Cox's Proportional Hazards Regression

There are several reasons Cox's proportional
hazards modeling was chosen to explain the effect
of covariates on time until event. They are
discussed below and include: the relative risk, no
parametric assumptions, the use of the partial
likelihood function, and the creation of survivor
function estimates.

Relative Risk

The simple interpretation given by the Cox model
as '"relative risk" type ratio is very desirable in
explaining the risk of event for a certain covariate.
For example, when we have a two-level covariate
with a value of 0 or 1, the hazard ratio becomes e”.
If the value of the coefficient is B = In(3) then it is
simply saying that the subjects labeled with a 1 are
three times more likely to have an event than the
subjects labeled with a 0. In this way we had a
measure of difference between our exposure
cohorts instead of simply knowing whether they
were different.

No Parametric Assumptions

Another attractive feature of Cox regression is not
having to choose the density function of a
parametric distribution. This means that Cox's
semiparametric modeling allows for no assumptions
to be made about the parametric distribution of the
survival times, making the method considerably
more robust. Instead, the researcher must only
validate the assumption that the hazards are
proportional over time. The proportional hazards
assumption refers to the fact that the hazard
functions are multiplicatively related. That is, their
ratio is assumed constant over survival time,



thereby not allowing a temporal bias to become an
influential player on the endpoint.

Use of the Partial Likelihood Function

The Cox model has the flexibility to introduce time-
dependent explanatory variables and handle
censoring of survival times due to its use of the
partial likelihood function. This was important to our
study in that any temporal biases due to differences
in hospitalization practices for different strata of the
significant covariates over the years of study
needed to be handled correctly. This ensured that
any differences in hospitalization experiences
between the exposed and nonexposed would not
be coming from these temporal differences.

Survivor Function Estimates

With the SAS option BASELINE, a SAS dataset
containing survival function estimates can be
created and output. These estimates correspond to
the means of the explanatory variables for each
stratum.

Analysis
Univariate Analyses

Using PROC FREQ, and PROC UNIVARIATE, an
initial univariate analysis of the demographic
variables crossed with hospitalization experience
was carried out to determine possible significant
explanatory variables to be included in the model
runs. All variables with a chi-square value or t
statistic of .15 or less were considered possibly
significant and were therefore retained for the
model analysis. Additionally the distributions of
attrition were checked to see if the cohorts
separated from active duty military service equally.

Modeling Approach

Using PROC PHREG, a saturated Cox model was
run after creating dummy variables, necessary for
the output of hazard ratios for the categorical
explanatory variables. A manual backward
stepwise analysis was carried out to create a model
with statistically significant effects of explanatory
variables on survival times.

Programming

PROC PHREG DATA=ANALYDAT;
MODEL INHOSP*CENSOR(0)= exposel pwhsp
status1 sex1 agel-age3 ms1 paygri-paygr2
oc_cat1-oc_cat9 ccep
/RL TIES=EFRON ;
TITLE1 'Cox Regression With Exposure Status In
the Model *;
RUN;

The options used in this survival analysis procedure
are described below:

DATA=ANALYDAT names the input data set for
the survival analysis.

RL requests for each explanatory variable, the 95%
(the default alpha level because the ALPHA= option
is not invoked) confidence limits for the hazard
ratios.

TIES=EFRON gives the researcher the
approximations to the EXACT method without using
the tremendous CPU it takes to run the EXACT
method. Both the EFRON and the BRESLOW
methods do reasonably well at approximating the
EXACT when there are not a lot of ties. If there are
a lot of ties, then the BRESLOW approximation of
the EXACT will be very poor. If the time scale is not
continuous and is therefore discrete, the option
TIES=DISCRETE should be used.

Stratification By Exposure Status

These data were then stratified by exposure and
the models were run with the exposure flag
covariate withdrawn from the model. This allowed
for inspection of interaction between exposure
status and covariates. Running these separate
models also allowed for the computation of survival
function estimates using the BASELINE function in
PROC PHREG. The survival curves (which are
really step functions for such numerous events that
they appear continuous) were now available to
compute the cumulative distribution function for the
separate cohorts.

Time Dependent Covariates

After the final model of significant explanatory
variables was created, it was necessary to validate
the proportional hazards assumption. If the
researcher believes that there may be a time
dependency from a certain variable then simply add



x1time to the list of independent variables and the
following below the model statement.

x1time=x1*(t)

Where t is the time variable and x1 is the suspected
time dependent variable.

If the interaction term is found to be insignificant we
can conclude that the proportional hazards
assumption holds. This is necessary to ensure that
there was no adverse effect from time-dependent
covariates creating different rates for different
subjects, thus making the ratios of their hazards
nonconstant.

Survivor Function Estimates By Exposure

The following is the code used after the ANALYDAT
was stratified into exposed or nonexposed. This
produces the survivor function estimates by
exposure while simultaneously checking to see if
there were any interactions between the covariates
and the exposure status.

PROC PHREG DATA=EXPOSEH1;
MODEL INHOSP*CENSOR(0)=pwhsp status1
sex1 agel-age8 msi1 paygri-paygr2 oc_cati-
oc_cat9 ccep
/RL TIES=EFRON ;
BASELINE OUT=SURVS SURVIVAL=S;
RUN;

The new options used in this survival analysis
procedure are described below:

BASELINE without the COVARIATES= option
produces the survivor function estimates
corresponding to the means of the explanatory
variables for each stratum.

OUT=SURVS names the data set output by the
BASELINE option.

SURVIVAL=S tells SAS to produce the survivor
function estimates in the output data set.

A simple calculation of 1-Survivor function
estimates in SURVS, obtained from running the
BASELINE option, produced the cumulative
distribution functions. We could now see the
cumulative probability estimates of hospitalization
over time. We were then able to visually scan for
differences in hospitalization experiences of
between the cohorts and look for insight as to

whether or not the proportional hazards assumption
had been violated.

The Plots

Figure 1 is what the cumulative distribution function
would look like if there were a violation of the
proportional hazards assumption. Note the sharp
increase in probability of hospitalization beginning
right before the third year and lasting for
approximately 1 year. After this one year period the
top curve then levels off and becomes parallel
again with the bottom curve.

Figure 1.
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Figure 2 shows what the cumulative distribution
function would look like if there were no violation of
the assumption of proportional hazards but there
did happen to be an observed significant difference
in the disease experience between the two cohorts
over the length of the study period.

Figure 2.
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Figure 3 shows what the cumulative distribution
function would look like if there were no problem
with the assumption of proportional hazards. The
figure also shows what the curves would look like it
there were not a significant difference observed
between the diagnosis experience of the two
cohorts.

Figure 3.
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Computing the Generalized R

Recently | was asked whether SAS computed the
R? value and what it was for that particular model. If
the researcher desires, the R® value can be
computed easily from the output of your regression,
although it is not an option of PROC PHREG.
Simply compute

R® =1 - exp(LR*/n)

Where LR is the Likelihood-ratio chi-square statistic
for testing the null hypothesis that all variables
included in the model have coefficients of 0, and n
is the number of observations. The researcher
needs to take extreme caution when comparing the
R® values of Cox regression models. Remember
from linear regression analysis, R®can be artificially
increased by simply adding explanatory variables to
the regression model (ie; more variables does not
equal a better model necessarily). Also, the above
computation does not give you the proportion of
variance of the dependent variable explained by the
independent variables as it would in linear
regression, but does give you a measure of how
associated the independent variables are with the
dependent variable.

Residual Analysis

A residual analysis is very important especially if
the sample size is relatively small. Add the
following after your model statement to output the
martingale and deviance residuals:

BASELINE
XBETA=XBET
RESDEV=RDEYV;

OUT=SURVS SURVIVAL=S
RESMART=MARTING

Then a simple plot of the residuals against the
linear predictor scores will give the researcher an
idea of the fit or lack of fit of the model to individual
observations.

PROC GPLOT DATA=SURVS;
PLOT (MARTING RDEV) * XBET / VREF=0;
SYMBOL1 VALUE=CIRCLE;

Results

Using the initial univariate comparisons for events
occurring during the study, the following variables
were selected for the subsequent model analyses:
gender, age group, marital status, race/ethnicity,
military occupational category, military pay grade,
salary, service branch, pre-exposure period
hospitalization, and exposure status. Home of
record was not shown to be significantly affecting
the endpoints in any either of the studies' models
and was dropped. Salary and length of service
were dropped from analyses due to colinearity with
age.

The subjects in cohort 1 had similar risks for two of
the three diseases during the August 1, 1991, to
July 31, 1997 study period compared with subjects
in cohort 2. The corresponding cumulative
probability plots (above) were nearly parallel for the
follow-up period. However, the Cox model did
reveal some consistently better predictors of
hospitalization with the two diseases, which
included female gender, preexposure period
hospitalization, enlisted pay grade, and US Reserve
service type.

The subjects in cohort 1 had significantly different
risks for the third disease during the August 1,
1991, to July 31, 1997 study period compared with
subjects in cohort 2. The corresponding cumulative
probability plots (above) were nearly parallel for the
first three years of follow-up, then there was a
drastic increase in hospitalization for a period of
about 1 year and then once again the curves
became nearly parallel again. Time-dependent



variables included in the modeling also confirmed
this result. The hazards ratio was not significantly
greater than 1 for the first 3 years of follow-up and
the last 3 years as well. However, during the 1 year
in question, though, the risk of hospitalization with
that particular disease was almost 3 times that of
cohort 1. Further investigation found that certain
treatment facilities had adopted an approach of
administratively hospitalizing these subjects for
extensive clinical evaluations. This approach was
later dropped almost 1 year to the date of the start.

Conclusions

The Cox proportional hazard model's robust nature
allows us to closely approximate the results for the
correct parametric model when the parametric is
unknown or in question. Using the SAS® system
procedure PROC PHREG, Cox's proportional
hazards modeling was used to compare the
hospitalization experiences of two or more cohorts.
The two studies produced models suggesting no
increase in risk among the exposed which were
later confirmed by producing the cumulative
distribution function. The study also found at least
one model which initially suggested an increase in
risk among the exposed. Further analysis revealed
that this sharp increase in risk for approximately 1
year was likely due to an outside factor affecting the
process of hospitalizing personnel for this particular
disease event.

The SAS® system's PROC PHREG with censoring
and the baseline option is a powerful tool for
handling early departure of subjects during the
study period. It is also useful for producing data
sets, including survival function estimates, which
can be used in a simple equation to produce
estimates of probability of events. When graphed,
these show cumulative probability of event curves
as a function of time. If it were not for the graphs of
the cumulative distribution functions, which showed
a sharp temporal bias, results may have been
reported and interpreted with much different results.
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