
Efficiency in R
Simple rules, Garbage
Collection, Profiling

& algorithms

Duncan Temple Lang
Dept. of Statistics

UC Davis

R and S-Plus primarily designed for EDA (Exploratory
Data Analysis)

Easy to express commands to look at aspects of data,
fit models, simulate.

Gradually, we have been increasingly using it for

large data,

programming, and

software development.

Over 1000 publicly available add-on packages.

So code is run not just by author but by numerous
other users.

Not just interested in saving human programming time
but also run-time.

And we want big data problems that wouldn’t ordinarily
be feasible in R to actually be feasible.

R uses pass-by-value or copy rather than references.

e.g. any changes that the lm() function makes to the
data frame in
 lm(y ~ x, data = myData)
do not change the original contents of the myData
variable.

This is a good thing - for users!
Don’t corrupt data and leave it in inconsistent state.

And makes debugging easier.
Can go up to earlier call frame to see original value of a
n argument in subsequent call.

But of course, making copies is very expensive for large
datasets.

So R tries to be clever internally and avoid copies
where possible.

Copy on change, i.e.
 data$y doesn’t create a copy,
but
 data$y[data$y == 0] = .00001 does.

And R uses lazy evaluation to avoid processing an
argument until it is needed.

We often create an R script/”program” one line at a
time
e.g. type command at prompt, get it to work, add it to a
file, and do the next step.

The result can be an obvious approach that is easy to
read (good)

but that may not be the most efficient to compute.

For example, we may end up recomputing the same
thing, e.g. indices of interest, numerous times rather
than computing once and assigning to a variable.
Y = data[data$gender == “Female”, “Weight”]
X = data[data$gender == “Female”, “Height”]

So we end up with unnecessary computations that slow
things down.

Of course, if we assign intermediate values to variables,
we are consuming more memory. Standard trade-off.

But these issues can matter when we are dealing with
large’ish amounts of data or computationally intensive
methods.

So we then sometimes need to write code in a slightly
more intelligent or less natural way to make things go
faster.

There are some simple rules of thumb to remember.

And there are tools to help identify where code is
inefficient so that one can focus on improving just those
bits.

The typical process is

do the naive, simple thing

if and only if it turns out to be too slow, find out

which part is causing the biggest slowdown.

Then improve just that bit.

If can’t improve sufficiently in R code, use compiled

code via .C()/.Call()/.Fortran().

Use initial implementation to verify that subsequent,
smarter versions give the same & correct results.

Refine code to make it better.

Sometimes have to think quite differently from obvious,
mathematical formulation.

“Premature optimization is the root of all evil”
Donald Knuth

Or, optimization -

Don’t do it

Don’t do it until you really have to.

Profiling

So you write some code, and it runs slowly.
i.e. it won’t complete in time to hand in homework!

Need to make it faster, but how?

Use rules from earlier.

But what if still not fast enough?

Find out what bit is taking the most time and see if you
can improve its performance.

10

Example - MCMC
You’ve seen how to generate random numbers for a PDF
f(x) using a few techniques.

Convenient if you can find majorizing function or inverse
of CDF.

A general approach is Markov Chain Monte Carlo -
MCMC

Create a mechanism for generating a new random
number based on current value, i.e. get X(t+1) from X(t).

Subject to quite general conditions, can sample from any
f using this technique.

11

MCMC
R function mcmc() to do this.

Give X(0) (starting value), target distribution
(stationary), and sample size (n)
And proposal density function and random number
generator for that proposal density.

Generate potential new value Y from proposal distn.
centered at X(t). Then toss a biased coin and if heads,
accept Y as X(t+1); o.w. X(t+1) = X(t)

Brilliance is in determining the bias of the coin
generally.

Generate n values and then take all but the first 10,000
say to avoid dependencies on initial value.

12

How fast is this?

sizes = c(20, 50, 100, 1000, 10000, 100000)
times =
 sapply(sizes,
 function(n)
 system.time(replicate(7,
 mcmc(-5, r, q,
 stationary = dnorm,
 n = n, alg = hastings))))

Get user, system and total time for 7 runs for each
sample size.

13

!!!!

!

!

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Total run!time for 7 repetitions of MCMC for 6 sample sizes

Sample Size

to
ta

l
ti
m

e

14

! ! ! !

!

!

4 6 8 10

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Total run!time for 7 repetitions of MCMC for six sample sizes

log(Sample Size)

to
ta

l
ti
m

e

15

How do we make this go faster?

Find the parts of the code that take the most time

And see if we can make them faster.

16

Rprof()
Could use system.time() to time particular pieces, but
that is tedious
Need to modify existing code, store times, etc.

The function Rprof() will gather data about how code in
R runs as it is being evaluated.

Call Rprof() to start the collection and tell it to write
the information to a file,
 Rprof(“profileData.prof”)

Run the code
 mcmc(-10, r, q, sta = dnorm, n = 1000)

Stop the profiling with Rprof(NULL)
17

Analyzing Profile Data

How do we access the profiling data?

Call summaryRprof() with the name of the file
containing the data.
p = summaryRprof(“profileData.prof”)

Now, p contains summary of time spent in each R
function that was invoked.

It arranges by total time in function and all functions it
called, and so on.

Or by “self” - time spent in that function alone

18

Doesn’t tell us the number of times a function was
called, just the total amount of time spent in that
function.

19

> p$by.self
 self.time self.pct total.time total.pct
"ifelse" 0.24 12.9 1.14 61.3
"rnorm" 0.24 12.9 0.24 12.9
"stationary" 0.18 9.7 0.18 9.7
"rep.default" 0.16 8.6 0.34 18.3
"rep" 0.12 6.5 0.46 24.7
"storage.mode" 0.12 6.5 0.18 9.7
"any" 0.10 5.4 0.10 5.4

So the use of ifelse() is consuming the most time.

Is that in our code, or the functions it calls.

Look at the function mcmc to see.

20

21

mcmc =
function(x.0 = 0, r, q, stationary, n = 1000,
 algorithm = metropolis)
{
 xs = numeric(n+1)
 xs[1] = x.0
 for(i in 1:n) {
 y = r(xs[i])
 k = algorithm(xs[i], y, stationary, q)
 xs[i+1] = ifelse(runif(1) <= k, y, xs[i])
 if(is.na(xs[i+1]))
 stop("Problems with missing value")
 }

 class(xs) <- "mcmc"
 xs
}

So it is possibly our use of ifelse()

Is there an alternative that we can try to see if it
improves matters?

Can use
 xs[i + 1] = if(runif(1) <= k) y else xs[i]

Change the code, and re-run the profiling.

22

So now it is the low-level internal functions runif,
rnorm, dnorm that take the time.

Mcmc and algorithm which is the hastings() function
might be improved.

But let’s compare the times with ifelse and if
23

 self.time self.pct total.time total.pct
"runif" 0.16 20.0 0.16 20.0
"rnorm" 0.14 17.5 0.14 17.5
"dnorm" 0.10 12.5 0.10 12.5
"mcmc" 0.08 10.0 0.74 92.5
"algorithm" 0.08 10.0 0.34 42.5
"min" 0.06 7.5 0.16 20.0
"gc" 0.06 7.5 0.06 7.5
"stationary" 0.06 7.5 0.06 7.5

4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Total time for 7 repetitions of MCMC for six sample sizes

using if() and ifelse()

log(Sample Size)

to
ta

l
ti
m

e

if

ifelse

24

Vectorize

Pass vector arguments rather than single values to R
functions.

E.g. sum(x) rather than
ans = 0
for(i in x) ans = ans + x[i]

E.g. grep(“abc”, lines)

And write functions you create to accept vectors.

Avoid concatenation!

When looping and creating the answer such as a matrix
or vector/list,

preallocate the result as an empty data structure
with the correct size and

then fill in the elements.

Do not concatenate the i-th result to the previous ones.

Preallocate Space for the Result

Consider the following code
ans = numeric()
for(i in 1:n)
 ans = cbind(ans, mean(rnorm(1000)))

In each step, we combine the new result with the
previous ones via cbind.

27

Consider the last iteration, i.e. i == n

The result from the previous iteration is a vector with
n-1 elements.

We then create a new result with n elements.

So before we assign the new result to ans, we have
approximately 2 copies of the results!

And we have to copy all the data from the original to
the new result.

This is bad news.
Some computations will not be feasible.

28

Introduces fragmented
memory with small
allocations in different
place

Alternative
We know the result is a numeric vector with n
elements,
so allocate it first and then assign each iteration’s result
into the corresponding column.

ans = numeric(n)
for(i in 1:n)
 ans[i] = mean(rnorm(1000))

This does the allocation (for the result) just once and
doesn’t create new objects, just modifies the existing
one.

The key thing is that ans[i] doesn’t create a new copy
of ans, but writes the values into the appropriate

29

Time Comparisons
system.time({ans = numeric() ; for(i in 1:10000) ans =
cbind(ans, rnorm(10))})
[1] 14.57 4.72 19.62 0.00 0.00

 system.time({ans = matrix(NA, 10, 10000) ; for(i in
1:10000) ans[,i] = rnorm(10)})
[1] 0.32 0.01 0.34 0.00 0.00

Of course, need to have multiple measurements to get
better estimates.

And the characteristics of the machine, etc. matter, but
still can compare the two meaningfully.

30

We could use apply() to make this read more easily and
be more efficient
 sapply(1:n, function(i) rnorm(10))
or replicate(n, rnorm(10))

The apply functions allocate the result space for us.

Note that we can define an “anonymous” function in the
call to sapply().
functions are first class objects in R.

But when we can’t use an apply function, making space
and writing into that existing space is much faster.

31

Why do we need to know about memory?

Because, when you run simulations as for your current
project, you may run into memory problems.
It then helps to be able to reason about them.

It is good to be able to determine approximately how
much memory you will need in a computation. Then you
can determine if it is feasible or not.

And it can also allow you to specify hints to R for how
much space it will need and can reserve.

32

Garbage Collection

Note that you never have to tidy up and remove values
when you no longer need them.

R does it for you, but at a small cost.

When R starts, it allocates a pool of memory it can use
for vectors, etc.

When R needs to allocate space, it see if it has enough
and if not, reclaims no-longer used memory via garbage
collection.

Then allocates the needed space.

The reclaiming of space can take time.
Also, has to grow the pool in certain cases.

33

If we know that we will need a certain amount of space
(how?), then we can tell R to preallocate a big enough
pool.

Then the garbage collection won’t occur, or at least as
often.

We can ask for a large amount of memory when
starting R using, e.g.
 R --min-vsize=.5G

See help for Startup, Memory

34

Start R with default settings, i.e. just run R with no
extra command line arguments.

Now, let’s create a large matrix - 1000 x 1000

Before we do, ask R to tell us when it does garbage
collection/resizing of the available space.
Use gcinfo(TRUE).

35

gcinfo(TRUE)

m = matrix(rnorm(1000 * 1000), 1000, 1000)

Garbage collection 4 = 1+0+3 (level 2) ...
180323 cons cells free (51%)
9.6 Mbytes of heap free (95%)
Garbage collection 5 = 1+0+4 (level 2) ...
180330 cons cells free (51%)
9.6 Mbytes of heap free (54%)
Garbage collection 6 = 1+0+5 (level 2) ...
180333 cons cells free (51%)
9.6 Mbytes of heap free (37%)

object.size(m)
[1] 8000120

36

Now, let’s try that again, but this time start R with 2Gb
of memory.
Don’t do this unless you know you need it!

Start R and tell it to use 2Gb of space for data objects
 R --min-vsize=2G

37

Again, turn on reporting of garbage collection
 gcinfo(TRUE)

Now, allocate the same matrix.
m = matrix(rnorm(1000 * 1000), 1000, 1000)

Note, there was no garbage collection.

38

General Lesson

Don’t normally have to tell R about the memory you will
need

But, if you have knowledge about the application, you
can provide it and often get some improvement.

And, when working with large data and complex tasks,
it is important to be able to know how much memory an
object will consume and whether you can handle 2, 3 or
4 copies of it in memory.

39

Fragmentation

Fragmentation happens when we create numerous
objects and then remove some and leave holes in the
allocated memory.

x1 = rnorm(10000)
x2 = rnorm(10000)
y = 10 * x1 + 20 * x2
rm(x2)

40

When we remove x2, we are left with a big hole.

If we go to allocate space for say 10001 elements, we
cannot use this space.

We may have lots of little pieces of space which
cumulatively total more than the desired amount of new
space.

But since they are not contiguous, we cannot use them
and so we cannot satisfy the new request.

We don’t have much control over this in R, but it is good
to know about it.

41

Recursion

Recursion is a technique that is often used to program
certain tasks.

It is essentially a way to loop or iterate over different
states.

It can be very natural and greatly simplify certain
problems.

It can also be quite inefficient and more clumsy
iterative techniques can be more efficient.

42

Fibonacci Numbers

Fibonacci introduced a sequence of numbers defined by
the n-the element Fn

Fo = 0,
F1 = 1
Fn = Fn-1 + Fn-2, n > 1

It is a sequence that arises in many different contexts
and has amazing mathematical properties.

For our purposes, note that the value for n is computed
from previously computed values, i.e. for n - 1 and n - 2.

43

Fibonacci function
Let’s write an R function to calculate the value of the
Fibonacci sequence for a given n.

fibonacci =
function(n) {
 if(n == 0 || n == 1)
 return(n)

 fibonacci(n - 1) + fibonacci(n - 2)
}

This is nice and simple.
The function calls itself - recursion.

44

Basics of Recursion

The function

calls itself
 with a different argument!

does some computations to solve the simple or special
cases on the original argument, e.g. n = 0, 1.

Any recursive algorithm can be written in an iterative
manner - i.e. using loops.

45

Iterative Fibonacci
fib2 =
function(n)
{
 if(n == 0 || n == 1) return(n)
 if(n == 2) return(1)

 f1 = f2 = 1
 for(i in seq(2, n-1)) {
 f = f1 + f2
 f2 = f1
 f1 = f
 }
 f
}

46

Let’s compare these in terms of speed
Which one will be faster?

Can you compare them in your head or on paper?

Or empirically
Create a simple experiment to measure the time
 do 20 repetitions each calculating F20.

47

How do we measure time for a computation:
 system.time(command)

Get back a vector with 5 elements:
 user time, system time, cpu time (and sub-processes)

48

 system.time(fib2(20))
[1] 0 0 0 0 0

Finite resolution that depends on the operating system.
(usually 1/1000 second)

So repeat the calculations many times to get longer
times. Then divide by the number of times performed.

fib2.times =
 system.time(sapply(1:1000, function(x) fib2(20)))
[1] 0.10 0.00 0.11 0.00 0.00

So total time of .11 seconds, per call .11/1000

49

The iterative version is much, much faster as n gets big.

Repeat it for various values of n, e.g. 1, 2, ..., 30

Then plot n & time taken and see if you see any
relationship.

fib2.times =
 sapply(1:30,
 function(i)
 system.time(sapply(1:1000,
 function(x) fib2(i))))

Same for fibonacci, and dynFibonacci.

50

! !
!

!

!

!

!

!

!

0 5 10 15 20 25 30

0
5

1
0

1
5

Seconds for each call to fibonacci and fib2

n

S
e
c
o
n
d
s

+ +

o

+

recursive

iterative

51

! !

!

! !

! ! ! ! !

! !

! !

!

! ! ! !

! ! ! !

! ! !

!

!

! !

0 5 10 15 20 25 30

0
.0
0
0
0
2

0
.0
0
0
0
6

0
.0
0
0
1
0

0
.0
0
0
1
4

Seconds for each call to iterative fib2

n

S
e
c
o
n
d
s

52

When
plotted on
the
appropriate
scale, it is
approximat
ely linear.

Dynamic Programming

Another approach is to use the simple recursive
algorithm but to store the values we have previously
computed.
Access these in subsequent calls.

53

Dynamic Fibonacci
.Fibonacci<- c(1, 1)
dynFibonacci <-
function(n)
{
 top = length(.Fibonacci)
 if(top >= n)
 return(.Fibonacci[n])

 for(i in seq(top + 1, n)) {
 .Fibonacci[i] <<- .Fibonacci[i - 1] + .Fibonacci[i - 2]
 }
 .Fibonacci[n]
}

54

Call dynFibonacci(10), then dynFibonacci(6) and it is
already calculated and stored.

dynFibonacci(20) can start from the previous highest
element, i.e. F10.

This is called memoization and is essentially Dynamic
Programming.
 Solve a problem by solving smaller problems and store
the results for these smaller problems for repeated
reuse.

55

+
++
+
++++++

+

+++

+

+
++++++

+
++
+
++++++++++++++++++++++++++++++

+
+++++++++++

+
+++++++++++

0 20 40 60 80

0
e
+
0
0

1
e
!
0
4

2
e
!
0
4

3
e
!
0
4

4
e
!
0
4

Time per call to fib2 and dynFibonacci

n

S
e
c
o
n
d
s

**

**
**
*
**

**

*

*

*

*

*

*

*
*
*

*

*
*
**
*

*

*

*
*

*
*
*
**
*
*

*

**

*

*
*
*
*

*
*
*
**

*

*

*

*

*

*

*
*

*

*

*

56

